find the other five trigonometric ratio if sin A =√3/2
Answers
Answered by
1
sin A = root 3/2
opposite side / hypotenus = root 3/2
opposite side = root 3
hypotenus = 2
so
as we know that.
( hypotenus )^2 = ( opposite side )^2 + ( adjacent side )^3
2^2 = root 3 ^2 + ( adjecent side )^2
4 - 3 = adjecent side ^2
adjacent sides = 1
so cos A = adjacent side / hypotenus
= 1/2
tan A = opposite side / adjecent side
= root3 /2
cosec A = 1/ sin A
= 1/ root3/2
= 2/ root 3
sec A = 1/cos A
= 1/ 1/2
= 2
cot A = 1/ tan A
= 1/ root3/1
= 1/root 3
opposite side / hypotenus = root 3/2
opposite side = root 3
hypotenus = 2
so
as we know that.
( hypotenus )^2 = ( opposite side )^2 + ( adjacent side )^3
2^2 = root 3 ^2 + ( adjecent side )^2
4 - 3 = adjecent side ^2
adjacent sides = 1
so cos A = adjacent side / hypotenus
= 1/2
tan A = opposite side / adjecent side
= root3 /2
cosec A = 1/ sin A
= 1/ root3/2
= 2/ root 3
sec A = 1/cos A
= 1/ 1/2
= 2
cot A = 1/ tan A
= 1/ root3/1
= 1/root 3
Answered by
2
if, sin A=√3/2
then cosec A=2/√3,
and sin²A+cos²A=1,
so, (√3/2)²+cos²A=1
=cos²A= 1-3/4
=cos²A= 1/4
=cos A= 1/2,
then, sec A= 2
now, tan A=sin A/cosA
so tan A= √3/2÷1/2
=√3/2*2/1
=√3,
and ∴cot A= 1/√3
then cosec A=2/√3,
and sin²A+cos²A=1,
so, (√3/2)²+cos²A=1
=cos²A= 1-3/4
=cos²A= 1/4
=cos A= 1/2,
then, sec A= 2
now, tan A=sin A/cosA
so tan A= √3/2÷1/2
=√3/2*2/1
=√3,
and ∴cot A= 1/√3
Similar questions