Math, asked by muruganandababu, 2 months ago

Find the other zeroes of the polynomial x^4_5x^3+2x^2+10x_8 if it is given that two of its zeroes are _root 2 and root 2​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: Let \: f(x) \:  =  \:{x}^{4}-5 {x}^{3}+{2x}^{2} +10x-8

Now,

Given that

\rm :\longmapsto\: \sqrt{2} \: and \:  -  \sqrt{2} \: are \: zeroes \: of \:f(x)

\rm :\longmapsto\:(x -  \sqrt{2})\: and \: (x + \sqrt{2}) \: are \: factors \: of \:f(x)

\rm :\longmapsto\:(x -  \sqrt{2}) \: (x + \sqrt{2}) \: is \:factor \: of \:f(x)

\rm :\longmapsto\: {x}^{2}  - 2 \: is \:factor \: of \:f(x)

So,

Using long division method,

We have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - 5x + 4\:\:}}}\\ {\underline{\sf{ {x}^{2} - 2}}}& {\sf{\:  {x}^{4} - 5{x}^{3} + {2x}^{2} + 10x - 8 \:\:}} \\{\sf{}}& \underline{\sf{ \: \:  \:  \:  \:  \:  \:  \:  \: - {x}^{4} \:  \:  \:  \: \:  \:   \:  \:  \: + 2 {x}^{2} \:  \:  \: \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }} \\ {{\sf{}}}& {\sf{\: \: \:  \:  \:  \: \: -  5{x}^{3}  +  {4x}^{2}  + 10x - 8 \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:   \:  \:  \:  {5x}^{3}  \:  \:  \:  \: \:  \:  \:  \:   \:  - 10x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  4 {x}^{2}   \:  \:  \:  \:  \:  \:  - 8 \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   - {4x}^{2}   \:  \:  \:  \:  \: + 8 \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \: 0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

We know,

Dividend = Divisor × Quotient + Remainder

\rm :\longmapsto\: \: \:{x}^{4}-5 {x}^{3}+{2x}^{2} +10x-8

\rm  \:  =  \: \:( {x}^{2} - 2)( {x}^{2} - 5x + 4)

\rm  \:  =  \: \:( {x}^{2} - 2)( {x}^{2} - 4x - x + 4)

\rm  \:  =  \: \:( {x}^{2} - 2)\bigg(x(x - 4) - 1(x - 4) \bigg)

\rm  \:  =  \: \:( {x}^{2} - 2)(x - 4)(x - 1)

Hence,

  • Remaining zeroes are 4 and 1.

Additional Information :-

Quadratic Polynomial

\rm :\longmapsto\: \alpha,\beta  \: are \: zeroes \: of \:  {ax}^{2} +  bx + c \: then \:

\green{ \boxed{ \bf \:  \alpha  +  \beta  =  -  \frac{b}{a}}}

\green{ \boxed{ \bf \:  \alpha \beta  =   \frac{c}{a}}}

Cubic Polynomial

\rm :\longmapsto\: \alpha,\beta, \gamma   \: are \: zeroes \: of \:  {ax}^{3} +   {bx}^{2}  + cx + d \: then \:

\green{ \boxed{ \bf \:  \alpha  +  \beta +  \gamma   =  -  \frac{b}{a}}}

\green{ \boxed{ \bf \:  \alpha \beta   +  \beta \gamma  +  \gamma  \alpha   =   \frac{c}{a}}}

\green{ \boxed{ \bf \:  \alpha\beta \gamma   =  -  \frac{d}{a}}}

Similar questions