Math, asked by Savagegirl69420lf, 4 months ago

Find the output values of the exponential function g(x) = 4,096x for x = 0, 0.25, 0.50, 0.75, and 1.

Answers

Answered by Anonymous
2

Answer:

The New Kingdom began under the rule of Ahmose. What did he accomplish that allowed for the emergence of the New Kingdom? He ended abuses by provincial governments. He initiated new irrigation projects.

hope this helps you

Answered by Anonymous
10

Answer:

Given: the exponential function  g(x)=4096^xg(x)=4096x .

Use: (a^n)^m=a^{nm}(an)m=anm

To find the output values of the exponential function for the given values of x:

we can write the function g(x) as, g(x)=(2^{12})^xg(x)=(212)x or g(x)=2^{12x}g(x)=212x .

Now, for x=0

g(0)=2^{12\cdot 0}=2^0=1g(0)=212⋅0=20=1

for x=0.25

g(0.25)=2^{12\cdot 0.25}=2^3=8g(0.25)=212⋅0.25=23=8

For x=0.50

g(0.50)=2^{12\cdot 0.50}=2^6=64g(0.50)=212⋅0.50=26=64

For x= 0.75

g(0.75)=2^{12\cdot 0.75}=2^9=512g(0.75)=212⋅0.75=29=512

and for x=1

g(1)=2^{12\cdot 1}=2^1=4096g(1)=212⋅1=21=4096

Therefore, the output values of the exponential function for the values of x are; {1, 8, 64, 512, 4096}

Similar questions