Math, asked by brarbrahm4768, 5 months ago

Find the particular integral of ( d²+a²) y = cos ax​

Answers

Answered by sonuchauhan8810
13

Answer:

helo guys its your answer

Step-by-step explanation:

f D is the particular integral of f(D) y = X. 2. 1. X. X dx. D. = ∫ . 3. 1 ax ax. X e. X e dx. D a ... Then to find PI put D – 2 for D in f(D) and take out e–2x. ∴. PI = { }. 2 ... ax f D f D. Put D2 = – a2.

Answered by hotelcalifornia
0

The particular integral of  (d^2+a^2)y=cos ax is \frac{x}{2a} sinax.

Step-by-step explanation:

Given:

(d^2+a^2)y=cos ax

To find:

The particular integral of (d^2+a^2)y=cos ax.

Solution:

(d^2+a^2)y=cos ax

Here  f(0)=0,

(d^2+a^2)=0

d^2=-a^2

d=-ia

Now the particular integral (PI),                              

PI=\frac{1}{d^2+a^2} cosax

     =\frac{1}{(d+ia)(d-ia)} cosax

Here, cosax=(\frac{e^{iax}+e^{-ax}  }{2i} )

     = \frac{1}{(d+ia)(d-ia)} (\frac{e^{iax}+e^{-iax}  }{2i} )

It can be written as,

    =\frac{1}{2i} (\frac{1}{d+ia} e^{iax} -\frac{1}{d-ia} e^{-iax} )

Here d=ia, d=-ia,

    =\frac{1}{2i} (\frac{1}{(d-ia)} \frac{1}{2i} )e^{iax} +(\frac{1}{(d+ia)} \frac{-1}{2i} )e^{-iax}

    =\frac{1}{2i}(\frac{1}{2ia} (\frac{1}{(d^+ia)}e^{iax} )-\frac{1}{2ia}  (\frac{1}{d^-ia} e^{-iax}))

    =\frac{1}{2i} (\frac{1}{2ia} xe^{iax} -\frac{1}{2ia} xe^{-iax} )

    =\frac{1}{2i}(\frac{x}{ia}  (\frac{e^{iax} -e^{-iax} }{2} ))

    =\frac{x}{2ai^2} (-sinax)

Here, i^{2}=-1

     =\frac{x}{2a} sinax

So the particular integral is  \frac{x}{2a} sinax.

Similar questions