English, asked by MrIRZETEX, 3 months ago

Find the percentage increase in the area of a triangle if its each side is doubled??​​

Answers

Answered by Anonymous
14

Let a,b,c be the sides of the original A & s be its semi perimeter.

S= (a+b+c)/2

2s= a+b+c...

The sides of a new A are 2a, 2b, 2c

[ given: Side is doubled]

Let s' be the new semi perimeter.

s'= (2a+2b+2c)/2

s'= 2(a+b+c) /2

s'= a+b+c

S'= 2s.

(From eq 1.(2)

Let A= area of original triangle

A= vs(s-a)(s-b)(s-c.(3)

A'= area of new Triangle

A' = Vs'(s'-2a)(s'-2b)(s'-2c)

A'= v 2s(2s-2a)(2s-2b)(2s-2c)

[From eq. 2]

A'= v 2s×2(s-a)×2(s-b)×2(s-c)

= v16s(s-a)(s-b)(s-c)

A'= 4 vs(s-a)(s-b)(s-c)

A'= 4A.

(From eq (3)

Increase in the area of the triangle= A'- A= 4A - 1A= 3A

%increase in area= (increase in the area of the triangle/ original area of the triangle)x 100

% increase in area= (3A/A)×100

% increase in area= 3x100=300 %

Hence, the percentage increase in the area of a triangle is 300%

  • SOLVED

-----------------------------------------------

-----------------------------------------------

HOpe tHis helPs uH akki♥️

♥️uh

Answered by sanvi01vyas
5

Answer:

Hiee ....

mai yaad hu kya ???

tu pinterest pr hai ??

agr hai toh apna I'd bhej. ..

Similar questions