Math, asked by Anonymous, 6 hours ago

Find the perimeter and area of a quadrilateral ABCD in which BC = 12 cm, CD = 9 cm, BD = 15cm, DA = 17 cm and ∠ ABD = 90°.​

Attachments:

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given that,

ABCD is a quadrilateral such that BC = 12 cm, CD = 9 cm, BD = 15cm, DA = 17 cm and ∠ ABD = 90°.

Now, In right triangle ABD

We have,

  • AD = 17 cm

  • BD = 15 cm

Using Pythagoras Theorem, we have

\rm :\longmapsto\: {AD}^{2}  =  {AB}^{2}  +  {BD}^{2}

\rm :\longmapsto\: {17}^{2}  =  {AB}^{2}  +  {15}^{2}

\rm :\longmapsto\: 289  =  {AB}^{2}  +  225

\rm :\longmapsto\: {AB}^{2} = 289 - 225

\rm :\longmapsto\: {AB}^{2} = 64

\bf\implies \:AB = 8 \: cm

Now, We know,

Perimeter of quadrilateral ABCD means sum of all sides of quadrilateral ABCD.

So,

 \red{\sf :\longmapsto\:Perimeter \: of \: quadrilateral \: ABCD}

\rm \:  =  \: AB + BC + CD + DA

\rm \:  =  \: 8 + 12 + 9 + 17

\rm \:  =  \: 46 \: cm

 \red{\rm\implies \:\boxed{\tt{ \sf \:Perimeter \: of \: quadrilateral \: ABCD} = 46 \: cm}}

Now, In triangle BDC

We have

\rm :\longmapsto\:BD = 15 \: cm

\rm :\longmapsto\:DC = 9 \: cm

\rm :\longmapsto\:BC = 12\: cm

Now, Consider

\rm :\longmapsto\: {BC}^{2} + {CD}^{2}  =  {9}^{2} +  {12}^{2} = 81 + 144 = 225 =  {BD}^{2}

\rm\implies \: \triangle \: BDC \: is \: right \: angle \triangle \: and\:  \angle \: C = 90 \degree

So,

 \purple{\rm :\longmapsto\:Area_{(ABCD)}}

\rm \:  =  \: Area_{(ABD)} + Area_{(BCD)}

\rm \:  =  \: \dfrac{1}{2}  \times \: AB  \times BD + \dfrac{1}{2}  \times BC \times DC

\rm \:  =  \: \dfrac{1}{2}  \times \: 8  \times 15 + \dfrac{1}{2}  \times 12 \times 9

\rm \:  =  \: 60 + 54

\rm \:  =  \: 114 \:  {cm}^{2}

 \\ \purple{\rm\implies \:\boxed{\tt{  \:  \: Area_{(ABCD)}  =  \: 114 \:  {cm}^{2}  \:  \: }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by EmperorSoul
10

\large\underline{\sf{Solution-}}

Given that,

ABCD is a quadrilateral such that BC = 12 cm, CD = 9 cm, BD = 15cm, DA = 17 cm and ∠ ABD = 90°.

Now, In right triangle ABD

We have,

AD = 17 cm

BD = 15 cm

Using Pythagoras Theorem, we have

\rm :\longmapsto\: {AD}^{2}  =  {AB}^{2}  +  {BD}^{2}

\rm :\longmapsto\: {17}^{2}  =  {AB}^{2}  +  {15}^{2}

\rm :\longmapsto\: 289  =  {AB}^{2}  +  225

\rm :\longmapsto\: {AB}^{2} = 289 - 225

\rm :\longmapsto\: {AB}^{2} = 64

\bf\implies \:AB = 8 \: cm

Now, We know,

Perimeter of quadrilateral ABCD means sum of all sides of quadrilateral ABCD.

So,

 \red{\sf :\longmapsto\:Perimeter \: of \: quadrilateral \: ABCD}

\rm \:  =  \: AB + BC + CD + DA

\rm \:  =  \: 8 + 12 + 9 + 17

\rm \:  =  \: 46 \: cm

 \red{\rm\implies \:\boxed{\tt{ \sf \:Perimeter \: of \: quadrilateral \: ABCD} = 46 \: cm}}

Now, In triangle BDC

We have

\rm :\longmapsto\:BD = 15 \: cm

\rm :\longmapsto\:DC = 9 \: cm

\rm :\longmapsto\:BC = 12\: cm

Now, Consider

\rm :\longmapsto\: {BC}^{2} + {CD}^{2}  =  {9}^{2} +  {12}^{2} = 81 + 144 = 225 =  {BD}^{2}

\rm\implies \: \triangle \: BDC \: is \: right \: angle \triangle \: and\:  \angle \: C = 90 \degree

So,

 \purple{\rm :\longmapsto\:Area_{(ABCD)}}

\rm \:  =  \: Area_{(ABD)} + Area_{(BCD)}

\rm \:  =  \: \dfrac{1}{2}  \times \: AB  \times BD + \dfrac{1}{2}  \times BC \times DC

\rm \:  =  \: \dfrac{1}{2}  \times \: 8  \times 15 + \dfrac{1}{2}  \times 12 \times 9

\rm \:  =  \: 60 + 54

\rm \:  =  \: 114 \:  {cm}^{2}

 \\ \purple{\rm\implies \:\boxed{\tt{  \:  \: Area_{(ABCD)}  =  \: 114 \:  {cm}^{2}  \:  \: }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions