Find the perimeter and area of the rectangle whose breadth is 8 cm and a diagonal is 17 cm.
Answers
question:
Find the perimeter and area of the rectangle whose breadth is 8 cm and a diagonal is 17 cm.
Solution:
- area = 120cm²
- perimeter = 46cm
Given:
- breadth = 8cm
- diagonal = 17cm
To find:
- perimeter
- area
Step by step explanation:
first let us find length of the rectangle:
by Pythagoras theorem,
∴ length of the rectangle = 15cm
now , let us find the area:
area = 8cm × 15cm
area = 120cm²
∴ area of the rectangle = 120cm²
now , let us find perimeter:
perimeter = 2(8+15)
perimeter = 2(23)
perimeter = 46cm
∴ perimeter of the rectangle = 46cm
Given
- Breadth of Rectangle ⇒ 8 cm
- Diagonal of Rectangle ⇒ 17 cm
_________________________________
To Find
- Perimeter of Rectangle
- Area of Rectangle
_________________________________
Solution
Breadth = 8 cm
Diagonal = 17 cm
Length = x cm
Using Pythagorean Theorem we will find the length of the rectangle. The hypotenuse would be 17 cm.
Pythagorean Theorem ⇒ Base² + Height² = Hypotenuse²
⇒ (x)² + (8)² = (17)²
⇒ x² + 64 = 289
⇒ x² + 64 - 64 = 289 - 64
⇒ x² = 225
⇒ x = √225
⇒ x = 15
∴ The length is 15 cm.
Perimeter of rectangle ⇒ 2 (Length + Breadth)
Length ⇒ 15 cm
Breadth ⇒ 8 cm
Perimeter of Rectangle ⇒ 2 (15 + 8)
⇒ 2 (23)
⇒ 46 cm
∴ Perimeter of Given Rectangle is 46 cm.
Area of Rectangle ⇒ Length × Breadth
Length ⇒ 15 cm
Breadth ⇒ 8 cm
Area of Rectangle ⇒ 15 × 8
⇒ 120 cm²
∴ Area of Given Rectangle is 120 cm².
_________________________________