Math, asked by ruchigupta90, 4 months ago

Find the perimeter and area of the rectangle whose breadth is 8 cm and a diagonal is 17 cm.​

Answers

Answered by Anonymous
37

question:

Find the perimeter and area of the rectangle whose breadth is 8 cm and a diagonal is 17 cm.

Solution:

  • area = 120cm²
  • perimeter = 46cm

Given:

  • breadth = 8cm
  • diagonal = 17cm

To find:

  • perimeter
  • area

Step by step explanation:

first let us find length of the rectangle:

by Pythagoras theorem,

  \sf{x}^{2}  +  {8}^{2}  =  {17}^{2}

\sf{x}^{2}  +  64 =  289

 \sf {x}^{2}  = 289 - 64

  \sf{x}^{2}  = 225

  \sf x =  \sqrt{225}

 \sf x = 15cm

∴ length of the rectangle = 15cm

now , let us find the area:

  \boxed{ \sf area \: of \: a \: rectangle \:  = length \times breadth}

area = 8cm × 15cm

area = 120cm²

∴ area of the rectangle = 120cm²

now , let us find perimeter:

 \boxed{\sf perimeter \: of \: a \: rectangle = 2(l + b)}

perimeter = 2(8+15)

perimeter = 2(23)

perimeter = 46cm

∴ perimeter of the rectangle = 46cm


spacelover123: Nice :D
VishalSharma01: Nice :)
Answered by spacelover123
18

Given

  • Breadth of Rectangle ⇒ 8 cm
  • Diagonal of Rectangle ⇒ 17 cm

_________________________________

To Find

  • Perimeter of Rectangle
  • Area of Rectangle

_________________________________

Solution

Breadth = 8 cm

Diagonal = 17 cm

Length = x cm

Using Pythagorean Theorem we will find the length of the rectangle. The hypotenuse would be 17 cm.

Pythagorean Theorem ⇒ Base² + Height² = Hypotenuse²

⇒ (x)² + (8)² = (17)²

⇒ x² + 64 = 289

⇒ x² + 64 - 64 = 289 - 64

⇒ x² = 225

⇒ x = √225

⇒ x = 15

∴ The length is 15 cm.

Perimeter of rectangle ⇒ 2 (Length + Breadth)

Length ⇒ 15 cm

Breadth ⇒ 8 cm

Perimeter of Rectangle ⇒ 2 (15 + 8)

⇒ 2 (23)

⇒ 46 cm

∴ Perimeter of Given Rectangle is 46 cm.

Area of Rectangle ⇒ Length × Breadth

Length ⇒ 15 cm

Breadth ⇒ 8 cm

Area of Rectangle ⇒ 15 × 8

⇒ 120 cm²

∴ Area of Given Rectangle is 120 cm².

_________________________________


VishalSharma01: Awesome :)
spacelover123: Thanks :D
Similar questions