Math, asked by Raiyaan3443, 1 year ago

Find the perimeter of a quadrilateral with vertices at C (−2, 4), D (−3, 1), E (1, 0), and F (−1, 2).

Answers

Answered by iamalpha
10
Was this helpful ??
plz comment and follow ...
Attachments:
Answered by hotelcalifornia
0

Answer:

The perimeter of the quadrilateral CDEF is ( \sqrt { 10 } + \sqrt { 17 } + \sqrt { 8 } + \sqrt { 5 } ) units.

Solution:

Using Distance Formula, we can find out length of each side.

According to Distance Formula:

\mathrm { CD } = \sqrt { [ ( - 3 ) - ( - 2 ) ] ^ { 2 } + [ ( 1 - 4 ) ] ^ { 2 } } = \sqrt { ( - 1 ) ^ { 2 } + ( - 3 ) ^ { 2 } } = \sqrt { 1 + 9 } = \sqrt { 10 } \text { units. }

\mathrm { DE } = \sqrt { [ ( 1 ) - ( - 3 ) ] ^ { 2 } + [ ( 0 - 1 ) ] ^ { 2 } } = \sqrt { 4 ^ { 2 } + ( - 1 ) ^ { 2 } } = \sqrt { 16 + 1 } = \sqrt { 17 } \text { units. }

\mathrm { EF } = \sqrt { [ ( - 1 ) - 1 ] ^ { 2 } + [ ( 2 - 0 ) ] ^ { 2 } } = \sqrt { ( - 2 ) ^ { 2 } + ( 2 ) ^ { 2 } } = \sqrt { 4 + 4 } = \sqrt { 8 } \text { units. }

\mathrm { FC } = \sqrt { [ ( - 1 ) - ( - 2 ) ] ^ { 2 } + [ ( 2 - 4 ) ] ^ { 2 } } = \sqrt { 1 ^ { 2 } + ( - 2 ) ^ { 2 } } = \sqrt { 1 + 4 } = \sqrt { 5 } \text { units }

Thus, Perimeter of the quadrilateral CDEF is

\begin{array} { l } { = \sqrt { 10 } \text { units. } + \sqrt { 17 } \text { units. } + \sqrt { 8 } \text { units. } \sqrt { 5 } \text { units. } } \\\\ { = ( \sqrt { 10 } + \sqrt { 17 } + \sqrt { 8 } + \sqrt { 5 } ) \text { units. } } \end{array}

Hence, the perimeter of the quadrilateral CDEF is ( \sqrt { 10 } + \sqrt { 17 } + \sqrt { 8 } + \sqrt { 5 } ) units.

Attachments:
Similar questions