Math, asked by divyanshi7874, 11 months ago

Find the perimeter of an equilateral triangle whose area is equal to that of triangle with side 21 CM 16 cm and 13 cm answer correct to 2 decimal place.​

Answers

Answered by Anonymous
16

\bf{\Huge{\underline{\underline{\rm{ANSWER\::}}}}}}

12√15 cm

\bf{Given}\begin{cases}\sf{1st\:Side\:of\:\triangle\:=\:21cm}\\ \sf{2nd\:side\:of\:\triangle\:=\:16cm}\\ \sf{3rd\:side\:of\:\triangle\:=\:13cm}\end{cases}}

\bf{\large{\underline{\underline{\sf{To\:find\::}}}}}

The perimeter of an equilateral triangle.

\bf{\Large{\underline{\underline{\tt{\blue{Explanation\::}}}}}}

Using formula of the Heron's Formula :

\bullet\sf{Semi-Perimeter\:of\:\triangle(S)\:=\:\frac{A+B+C}{2} }\\\\\bullet\sf{Area\:of\:\triangle\:=\:\sqrt{S(S-A)(S-B)(S-C)} }

A/q

\implies\sf{Semi-perimeter\:=\:\dfrac{21cm+16cm+13cm}{2} }\\\\\\\\\implies\sf{Semi-perimeter\:=\:\cancel{\dfrac{50cm}{2} }}\\\\\\\\\implies\sf{\blue{Semi-perimeter\:\big[S\big]=\:25cm}}\\\\\\\tt{Now,}\\\\\implies\sf{Area\:of\:\triangle\:=\:\sqrt{S(S-A)(S-B)(S-C)} }\\\\\\\\\implies\sf{Area\:of\:\triangle\:=\:\sqrt{25(25-21)(25-16)(25-13)} }\\\\\\\\\implies\sf{Area\:of\:\triangle\:=\:\sqrt{25(4)(9)(12)} }\\\\\\\\\implies\sf{Area\:of\:\triangle\:=\:\sqrt{25*4*9*12}}\\

\implies\sf{Area\:of\:\triangle\:=\:\sqrt{5*5*2*2*3*3*2*2*3} }\\\\\\\\\implies\sf{Area\:of\:\triangle\:=\:(5*2*3*2\sqrt{3} )cm^{2}}

\implies\sf{\blue{Area\:of\:\triangle\:=\:60\sqrt{3}\: cm^{2} }}

According to the question :

\bf{\Large{\boxed{\sf{Area\:of\:an\:equilateral\:\triangle\:=\:\frac{\sqrt{3} }{4} a^{2} }}}}}}

\implies\sf{\dfrac{\sqrt{3} }{4} a^{2} \:=\:60\sqrt{3} }\\\\\\\\\implies\sf{a^{2} \:=\:\dfrac{60\cancel{\sqrt{3} }*4}{\cancel{\sqrt{3}} } }\\\\\\\\\implies\sf{a^{2} \:=\:(60*4)cm^{2} }\\\\\\\\\implies\sf{a\:=\:\sqrt{240cm^{2} } }\\\\\\\\\implies\sf{\blue{a\:=\:4\sqrt{15} \:cm}}

Now,

\bf{\large{\boxed{\sf{Perimeter\:of\:an\:equilateral\:\triangle\:=\:Side+Side+Side}}}}}}

\longmapsto\sf{Perimeter\:=\:4\sqrt{15}\:cm +4\sqrt{15} \:cm+4\sqrt{15} \:cm}\\\\\\\\\longmapsto\sf{\blue{Perimeter\:=\:12\sqrt{15}\: cm}}

Thus,

Perimeter is 12√15 cm.

Answered by dplincsv
2

Step-by-step explanation:

Sides of a triangle:

a = 21cm

b = 16cm

c = 13cm

Area of the triangle = √s(s-a)(s-b)(s-c)

Where s = a+b+c / 2

s = 21+16+13 / 2

s = 50/2 = 25

Area = √25(25-21)(25-16)(25-13) = 103.923 cm²

Area of the equilateral triangle = √3/4 a²

√3/4 a² = 103.923

a = 15.59 cm

So, Perimeter of the equilateral triangle = 3×side = 3×15.59 = 46.77 cm

Therefore, the perimeter of equilateral triangle = 46.77cm

Similar questions