Math, asked by baghelkiran205, 11 months ago

find the perimeter of the rectangle whose length is 20m and diagonal is 60cm​

Answers

Answered by Brâiñlynêha
2

\huge\mathbb{SOLUTION:-}

\bold{Given:-}\begin{cases}\sf{Length\:of\: rectangle=20m}\\ \sf{Diagonal\:of\: rectangle:-60cm}\end{cases}

\huge\sf{\star{To\:Find:-}}

  • The perimeter of rectangle

\sf\underline{Step\:By\:step\: Explanation:-}

  • Find the breadth or side of rectangle by Pythagoras theorm..

\boxed{\star{\sf{Diagonal {}^{2}=base{}^{2}+perpendicular {}^{2}}}}

\sf\implies 60{}^{2}=20{}^{2}+breadth{}^{2}\\ \\ \sf\implies 3600=400+breadth{}^{2}\\ \\ \sf\implies 3600-400=breadth{}^{2}\\ \\ \sf\implies 3200=breadth{}^{2}\\ \\ \sf\implies breadth=\sqrt{3200}\\ \\ \sf\implies breadth= 56.57cm

  • The breadth of rectangle is 56.69cm
  • Now the perimeter of rectangle

\boxed{\sf{Perimeter\:if\: rectangle=2(l+b)}}

\sf\implies perimeter=2(20+56.57)\\ \\ \sf\implies Perimeter=2\times 76.57cm\\ \\ \sf\implies Perimeter\:of\: rectangule=153.14cm

\boxed{\sf{\red{Perimeter\:of\: rectangle=153.14cm}}}

#BAL

#answerwithquality

Answered by chhikaratarun6
0

Answer:

cygfjcgfjcfygjvycj  uygjhhgjm j   jbj nbvj  bhj nbv mjb b

Step-by-step explanation:

hfd niydhgtgituise hikrhiu r'SDr s

t

tyh

tyjh

gjhikgoluvfjmndc utehi iuh irhtii ier ihofiog hoir

Similar questions