Math, asked by s0amaru1madhyam, 1 year ago

Find the perimeter of the triangle formed by points o(0,0) , (a,0) and (0,b).

Answers

Answered by mysticd
18
it is a right angled triangle
distance between (0,0) and (a,0) = a

distance between (0,0) and (0,b)= b

using Pythagorean theorem
hypotenuse = root a^2+b^2
Attachments:
Answered by wifilethbridge
29

Answer:

a+b+\sqrt{a^2+b^2}

Step-by-step explanation:

A=(0,0)

B = (a,0)

C = (0,b)

Now find the sides of triangle AB,BC,AC

To find AB use distance formula :

d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}

(x_1,y_1)=(0,0)

(x_2,y_2)= (a,0)

Substitute the values in the formula :

AB=\sqrt{(a-0)^2+(0-0)^2}

AB=\sqrt{(a)^2+(0)^2}

AB=\sqrt{a^2}

AB=a

To Find BC

(x_1,y_1)=(a,0)

(x_2,y_2)=(0,b)

Substitute the values in the formula :

BC=\sqrt{(0-a)^2+(b-0)^2}

BC=\sqrt{(-a)^2+(b)^2}

BC=\sqrt{a^2+b^2}

To Find AC

(x_1,y_1)=(0,0)

(x_2,y_2)=(0,b)

Substitute the values in the formula :

AC=\sqrt{(0-0)^2+(b-0)^2}

AC=\sqrt{(0)^2+(b)^2}

AC=\sqrt{b^2}

AC=b

Thus the sides of the triangle are a,b,\sqrt{a^2+b^2}

Perimeter of triangle = Sum of all sides

                                  a+b+\sqrt{a^2+b^2}

Hence the perimeter of the triangle formed by points o(0,0) , (a,0) and (0,b) is  a+b+\sqrt{a^2+b^2}

Similar questions