Math, asked by subitha, 1 year ago

find the perimeter of triangle with vertices ( 0,8 ) ( 6,0 ) and origin ( 9,3 ) ( 1, - 3 ) and orgin

Answers

Answered by Tanvir1591
7
Use the distance formula
First triangle:
(0,0) (0,8) (6,0)
the 3 sides are
 \sqrt{ (0-0)^{2} + (0-8)^{2} } = 8
 \sqrt{ (0-0)^{2} + (0-6)^{2} } = 6
 \sqrt{ (0-6)^{2} + (8-0)^{2} } = 10
Perimeter = 24

Second Triangle:
(0,0) (9,3) (1,-3)
 \sqrt{ (0-9)^{2} + (0-3)^{2} } =3\ \sqrt{10}
 \sqrt{ (0-1)^{2} + (0-(-3))^{2} } = \sqrt{10}
 \sqrt{ (9-1)^{2} + (3-(-3))^{2} } = 10
Perimeter = 10 + 4 \sqrt{10}
Answered by senthilshomaesh
0

Answer:

oiiiihyuyujfr867rk,ud5,t,i5k7oy.r6lo\geq \leq x^{2} x^{2} \sqrt[n]{x}→³∴∧∨

Step-by-step explanation:

Similar questions