find the period of f(x)=sinx+sin^2x+sin^3x+.....................+sin^2020x
Answers
Answered by
7
2π is Period of f(x) = sinx + sin²x + sin³x + ......... ............ + sin²⁰²⁰x is 2π
Step-by-step explanation:
f(x)=sinx+sin²x+sin³x+.....................+sin²⁰²⁰x
this is an GP
First term a = Sinx
Common Ratio = Sinx
number of terms = 2020
Sum of an GP = a(1 - rⁿ )/(1 - r)
= Sinx( 1 - Sin²⁰²⁰x )/(1 - Sinx )
Let check for π/2
then f(x + π/2) = (-Cosx)( 1 - Cos²⁰²⁰x )/(1 +Cosx) ≠ f(x)
Let check for π
then f(x + π ) = (-Sinx)( 1 - Sin²⁰²⁰x)/(1 + Sinx) ≠ f(x)
Let check for 2π
then f(x + 2π ) = ( Sinx)( 1 - Sin²⁰²⁰x)/(1 -Sinx) = f(x)
Hence Period of f(x)=sinx+sin²x+sin³x+.....................+sin²⁰²⁰x is 2π
Learn More:
Find the period of the function: tan (x + 4x +9x + ... + n²x) (n is any ...
https://brainly.in/question/6963869
Find the period of the function cos(4x+9/5) - Brainly.in
https://brainly.in/question/8408354
Similar questions