Math, asked by sofiya02, 6 hours ago

FIND the point of inflexion of the function y=1/3 x³ - 5/2x² + 6x - 12 ​

Answers

Answered by juanRicardo
6

Answer:

f  ′  (x)

f  ′′  (x)

=5x  4  +  3

20

​  x  3  

=20x  3  +20x  2  

=20x  2  (x+1)

Step-by-step explanation:

Example: Finding the inflection points of f(x)=x^5+\dfrac53x^4f(x)=x  

5  +  3

5

​  x  4

f, left parenthesis, x, right parenthesis, equals, x, start superscript, 5, end superscript, plus, start fraction, 5, divided by, 3, end fraction, x, start superscript, 4, end superscript

Step 1: Finding the second derivative

To find the inflection points of fff, we need to use f''f  

′′

f, start superscript, prime, prime, end superscript:

\begin{aligned} f'(x)&=5x^4+\dfrac{20}{3}x^3 \\\\ f''(x)&=20x^3+20x^2 \\\\ &=20x^2(x+1) \end{aligned}  

f  ′  (x)

f  ′′  (x)

=5x  4  +  3

20

​  x  3  

=20x  3  +20x  2  

=20x  2  (x+1)

 

 

 

Olga was asked to find where f(x)=(x-2)^4f(x)=(x−2)  

4

f, left parenthesis, x, right parenthesis, equals, left parenthesis, x, minus, 2, right parenthesis, start superscript, 4, end superscript has inflection points. This is her solution:

Step 1:

\begin{aligned} f'(x)&=4(x-2)^3 \\\\\\ f''(x)&=12(x-2)^2 \end{aligned}  

f  

(x)

f  

′′

(x)

 

=4(x−2)  

3

 

=12(x−2)  

2

 

 

Step 2: The solution of f''(x)=0f  

′′

(x)=0f, start superscript, prime, prime, end superscript, left parenthesis, x, right parenthesis, equals, 0 is x=2x=2x, equals, 2.

Step 3: fff has inflection point at x=2x=2x, equals, 2.

 

 

Similar questions