Math, asked by kirandeepkaur46164, 2 months ago

if the sum of two integer is 240 and one of them is - 54 find other integer
solve fast​

Answers

Answered by kamalbiswakarma1234
1

Answer:

here is your answer hope that helps you

Attachments:
Answered by TrustedAnswerer19
1

 \huge \:  \fbox \red {{{ \colorbox{green}{{answer}}}}}

Topic :-This is your punishment for spamming in my question.

Differentiation

To Differentiate :-

f(x)=\cot x \cdot \ln \sec x

Solution :-

f(x)=\cot x \cdot \ln \sec x

\dfrac{d(f(x))}{dx}=\dfrac{d(\cot x \cdot \ln \sec x)}{dx}

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot\dfrac{d(\cot x )}{dx}+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

\left(\because \dfrac{d(fg)}{dx}=g\cdot \dfrac{d(f)}{dx}+f\cdot\dfrac{d(g)}{dx} \right)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot(-\csc^2x)+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

\left(\because \dfrac{d(\cot x)}{dx}=-\csc^2x \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot\dfrac{d(\sec x )}{dx}

\left(\because \dfrac{d(\ln t)}{dx}=\dfrac{1}{t}\cdot\dfrac{dt}{dx} \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot \sec x\cdot \tan x

\left(\because \dfrac{d(\sec x)}{dx}=\sec x\cdot \tan x \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+(\cot x\cdot\tan x)\cdot\left (\dfrac{1}{\cancel{\sec x}}\cdot \cancel{\sec x}\right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+1

(\because \cot x \cdot \tan x = 1)

Answer :-

\underline{\boxed{\dfrac{d(f(x))}{dx}=1-\csc^2x \cdot\ln \sec x}}

Note : csc x = cosec x

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

Correct Expression :-

\mathtt{\dfrac{x^3+12x}{6x^2+8}=\dfrac{y^3+27y}{9y^2+27}}

To Find :-

\mathtt{x:y\:\:by\:using\:Componendo\:and\:Dividendo.}

Concept Used :-

\mathtt{If\:\dfrac{a}{b}=\dfrac{c}{d},then\:using\:Componendo\:and\:Dividendo}

\mathtt{\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}}

Solution :-

\mathtt{\dfrac{x^3+12x}{6x^2+8}=\dfrac{y^3+27y}{9y^2+27}}

Using Componendo and Dividendo,

\mathtt{\dfrac{x^3+12x+(6x^2+8)}{x^3+12x-(6x^2+8)}=\dfrac{y^3+27y+(9y^2+27)}{y^3+27y-(9y^2+27)}}

Opening brackets,

\mathtt{\dfrac{x^3+12x+6x^2+8}{x^3+12x-6x^2-8}=\dfrac{y^3+27y+9y^2+27}{y^3+27y-9y^2-27}}

Rewriting it,

\mathtt{\dfrac{x^3+3(2)^2(x)+3(2)(x^2)+2^3}{x^3+3(2^2)x-3(2)(x^2)-2^3}=\dfrac{y^3+3(3^2)(y)+3(3)(y^2)+3^3}{y^3+3(3^2)(y)-3(3)(y^2)-3^3}}

We know that,

\mathtt{(a+b)^3=a^3+3ab^2+3a^2b+b^3}

\mathtt{(a-b)^3=a^3+3ab^2-3a^2b-b^3}

Using Identities,

\mathtt{\dfrac{(x+2)^3}{(x-2)^3}=\dfrac{(y+3)^3}{(y-3)^3}}

\mathtt{\left(\dfrac{x+2}{x-2}\right)^3=\left(\dfrac{y+3}{y-3}\right)^3}

Taking Cube Root on both sides,

\mathtt{\sqrt[3]{\left(\dfrac{x+2}{x-2}\right)^3}=\sqrt[3]{\left(\dfrac{y+3}{y-3}\right)^3}}

\mathtt{\dfrac{x+2}{x-2}=\dfrac{y+3}{y-3}}

Using Componendo and Dividendo again,

\mathtt{\dfrac{x}{2}=\dfrac{y}{3}}

We can write it as,

\mathtt{\dfrac{x}{y}=\dfrac{2}{3}}

Answer :-

Hence, x : y is equivalent to 2 : 3.

\Huge{\textbf{\textsf{{\purple{Ans}}{\pink{wer}}{\color{pink}{:}}}}} \\

Answered by TrustedAnswerer19
1

 \huge \:  \fbox \red {{{ \colorbox{green}{{answer}}}}}

Topic :-This is your punishment for spamming in my question.

Differentiation

To Differentiate :-

f(x)=\cot x \cdot \ln \sec x

Solution :-

f(x)=\cot x \cdot \ln \sec x

\dfrac{d(f(x))}{dx}=\dfrac{d(\cot x \cdot \ln \sec x)}{dx}

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot\dfrac{d(\cot x )}{dx}+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

\left(\because \dfrac{d(fg)}{dx}=g\cdot \dfrac{d(f)}{dx}+f\cdot\dfrac{d(g)}{dx} \right)

\dfrac{d(f(x))}{dx}=\ln \sec x\cdot(-\csc^2x)+\cot x\cdot\dfrac{d(\ln\sec x )}{dx}

\left(\because \dfrac{d(\cot x)}{dx}=-\csc^2x \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot\dfrac{d(\sec x )}{dx}

\left(\because \dfrac{d(\ln t)}{dx}=\dfrac{1}{t}\cdot\dfrac{dt}{dx} \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+\cot x\cdot\dfrac{1}{\sec x}\cdot \sec x\cdot \tan x

\left(\because \dfrac{d(\sec x)}{dx}=\sec x\cdot \tan x \right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+(\cot x\cdot\tan x)\cdot\left (\dfrac{1}{\cancel{\sec x}}\cdot \cancel{\sec x}\right)

\dfrac{d(f(x))}{dx}=-\csc^2x \cdot\ln \sec x+1

(\because \cot x \cdot \tan x = 1)

Answer :-

\underline{\boxed{\dfrac{d(f(x))}{dx}=1-\csc^2x \cdot\ln \sec x}}

Note : csc x = cosec x

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ANSWER}}}

Correct Expression :-

\mathtt{\dfrac{x^3+12x}{6x^2+8}=\dfrac{y^3+27y}{9y^2+27}}

To Find :-

\mathtt{x:y\:\:by\:using\:Componendo\:and\:Dividendo.}

Concept Used :-

\mathtt{If\:\dfrac{a}{b}=\dfrac{c}{d},then\:using\:Componendo\:and\:Dividendo}

\mathtt{\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}}

Solution :-

\mathtt{\dfrac{x^3+12x}{6x^2+8}=\dfrac{y^3+27y}{9y^2+27}}

Using Componendo and Dividendo,

\mathtt{\dfrac{x^3+12x+(6x^2+8)}{x^3+12x-(6x^2+8)}=\dfrac{y^3+27y+(9y^2+27)}{y^3+27y-(9y^2+27)}}

Opening brackets,

\mathtt{\dfrac{x^3+12x+6x^2+8}{x^3+12x-6x^2-8}=\dfrac{y^3+27y+9y^2+27}{y^3+27y-9y^2-27}}

Rewriting it,

\mathtt{\dfrac{x^3+3(2)^2(x)+3(2)(x^2)+2^3}{x^3+3(2^2)x-3(2)(x^2)-2^3}=\dfrac{y^3+3(3^2)(y)+3(3)(y^2)+3^3}{y^3+3(3^2)(y)-3(3)(y^2)-3^3}}

We know that,

\mathtt{(a+b)^3=a^3+3ab^2+3a^2b+b^3}

\mathtt{(a-b)^3=a^3+3ab^2-3a^2b-b^3}

Using Identities,

\mathtt{\dfrac{(x+2)^3}{(x-2)^3}=\dfrac{(y+3)^3}{(y-3)^3}}

\mathtt{\left(\dfrac{x+2}{x-2}\right)^3=\left(\dfrac{y+3}{y-3}\right)^3}

Taking Cube Root on both sides,

\mathtt{\sqrt[3]{\left(\dfrac{x+2}{x-2}\right)^3}=\sqrt[3]{\left(\dfrac{y+3}{y-3}\right)^3}}

\mathtt{\dfrac{x+2}{x-2}=\dfrac{y+3}{y-3}}

Using Componendo and Dividendo again,

\mathtt{\dfrac{x}{2}=\dfrac{y}{3}}

We can write it as,

\mathtt{\dfrac{x}{y}=\dfrac{2}{3}}

Answer :-

Hence, x : y is equivalent to 2 : 3.

\Huge{\textbf{\textsf{{\purple{Ans}}{\pink{wer}}{\color{pink}{:}}}}} \\

Similar questions