Math, asked by varadthorat27, 4 months ago

Find the point on y-axis which is equidistant from the points (2,2) and (-4,4 ​

Answers

Answered by vipashyana1
1

Answer:

Let B be the point equidistant from A and C

A=(2,2), B=(0,y), C=(-4,4)

Distance between AB=Distance between BC

 \sqrt{ {(x2 - x1)}^{2}  +  {(y2 - y1)}^{2} }  = \sqrt{ {(x2 - x1)}^{2}  +  {(y2 - y1)}^{2} }

 \sqrt{ {(0 - 2)}^{2} +  {(y - 2)}^{2}  }  =  \sqrt{ {( - 4 - 0)}^{2} +  {(4 - y)}^{2}  }

 \sqrt{ {( - 2)}^{2} +  {(y - 2)}^{2}  }  =  \sqrt{ {( - 4)}^{2} +  {(4 - y)}^{2}  }

 \sqrt{4 +  {y}^{2} - 4y + 4 }  =  \sqrt{16 + 16 - 8y +  {y}^{2} }

 \sqrt{ {y}^{2} - 4y + 8 }  =  \sqrt{ {y}^{2}  - 8y + 32}

squaring \: on \: both \: the \: sides

 { (\sqrt{ {y}^{2} - 4y + 8 } )}^{2}  =  { (\sqrt{ {y}^{2} - 8y + 32 } )}^{2}

 {y}^{2}  - 4y + 8 =  {y}^{2}  - 8y + 32

 {y}^{2}  -  {y}^{2}  - 4y + 8y + 8 - 32 = 0

4y - 24 = 0

4y = 24

y =  \frac{24}{4}  = 6

Therefore, (0,6) is the point on y-axis which is equidistant from the given points.

Similar questions