Math, asked by pushpamganesan9442, 1 year ago

find the point that divides AD where A(5,2) B(3,4) in the ratio 1:6 internally​

Answers

Answered by Anonymous
3

SOLUTION:-

The coordinates of the point P(x,y) which divides the line segment AB internally in the ratio m:n given by;

 =  >  (\frac{ mx2 + nx1}{m + n}  , \frac{my2 + ny1}{m + n} )

Let point C=C(x,y) divide the given line AB in the ratio 1:6.

AC:CB =m:n = 1:6.

Therefore,

x =  \frac{mx2 + nx1}{m + n}  \\  \\  =  >  \frac{1 \times3 + 6 \times 5 }{1 + 6}  \\  \\  =  >  \frac{3 + 30}{7}  \\  \\  =  >  \frac{33}{7}  = 4.7

And y coordinate;

y =  \frac{my2 + ny1}{ m + n}  \\  \\  =  >  \frac{1  \times4 + 6  \times 2 }{1 + 6}  \\  \\  =  >  \frac{4 + 12}{7}  \\  \\  =  >  \frac{16}{7}  = 2.2

Hence,

The coordinates of the point C are

(4.7, 4.8).

Hope it helps ☺️

Similar questions