find the points of trisection of the line segment joining (5,-2) and (3,6)
Answers
Answer:
The volume of the cone is 9240 cm³.
Step-by-step-explanation:
We have given that,
Radius of base of cone ( r ) = 21 cm
Height of cone ( h ) = 20 cm
We have to find the volume of the cone.
We know that,
\displaystyle{\boxed{\pink{\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\pi\:r^2\:h\:}}}
Volumeofcone=
3
1
πr
2
h
\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\times\:\dfrac{22}{7}\:\times\:(\:21\:)^2\:\times\:20}⟹Volumeofcone=
3
1
×
7
22
×(21)
2
×20
\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\times\:\dfrac{22}{\cancel{7}}\:\times\:\cancel{21}\:\times\:21\:\times\:20}⟹Volumeofcone=
3
1
×
7
22
×
21
×21×20
\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:\dfrac{1}{\cancel{3}}\:\times\:22\:\times\:\cancel{3}\:\times\:21\:\times\:20}⟹Volumeofcone=
3
1
×22×
3
×21×20
\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:22\:\times\:21\:\times\:20}⟹Volumeofcone=22×21×20
\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:22\:\times\:420}⟹Volumeofcone=22×420
\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:22\:(\:400\:+\:20\:)}⟹Volumeofcone=22(400+20)
\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:22\:\times\:400\:+\:22\:\times\:20}⟹Volumeofcone=22×400+22×20
\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:8800\:+\:440}⟹Volumeofcone=8800+440
\displaystyle{\implies\:\underline{\boxed{\red{\sf\:Volume\:of\:cone\:=\:9240\:cm^3\:}}}}⟹
Volumeofcone=9240cm
3
∴ The volume of the cone is 9240 cm³.