Math, asked by artherpaul45, 13 hours ago

find the points of trisection of the line segment joining (5,-2) and (3,6)​

Answers

Answered by kanishop454
0

Answer:

The volume of the cone is 9240 cm³.

Step-by-step-explanation:

We have given that,

Radius of base of cone ( r ) = 21 cm

Height of cone ( h ) = 20 cm

We have to find the volume of the cone.

We know that,

\displaystyle{\boxed{\pink{\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\pi\:r^2\:h\:}}}

Volumeofcone=

3

1

πr

2

h

\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\times\:\dfrac{22}{7}\:\times\:(\:21\:)^2\:\times\:20}⟹Volumeofcone=

3

1

×

7

22

×(21)

2

×20

\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:\dfrac{1}{3}\:\times\:\dfrac{22}{\cancel{7}}\:\times\:\cancel{21}\:\times\:21\:\times\:20}⟹Volumeofcone=

3

1

×

7

22

×

21

×21×20

\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:\dfrac{1}{\cancel{3}}\:\times\:22\:\times\:\cancel{3}\:\times\:21\:\times\:20}⟹Volumeofcone=

3

1

×22×

3

×21×20

\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:22\:\times\:21\:\times\:20}⟹Volumeofcone=22×21×20

\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:22\:\times\:420}⟹Volumeofcone=22×420

\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:22\:(\:400\:+\:20\:)}⟹Volumeofcone=22(400+20)

\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:22\:\times\:400\:+\:22\:\times\:20}⟹Volumeofcone=22×400+22×20

\displaystyle{\implies\sf\:Volume\:of\:cone\:=\:8800\:+\:440}⟹Volumeofcone=8800+440

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:Volume\:of\:cone\:=\:9240\:cm^3\:}}}}⟹

Volumeofcone=9240cm

3

∴ The volume of the cone is 9240 cm³.

Similar questions