Math, asked by shovini9052, 2 months ago

Find the points which divide the line segment joining A(-11,4)and B (9,8) into four equal parts

Answers

Answered by MaheswariS
18

\underline{\textbf{Given:}}

\textsf{Points are A(-11,4) and B(9,8)}

\underline{\textbf{To find:}}

\textsf{The points which line segment joinining AB into}

\textsf{four equal parts}

\underline{\textbf{Solution:}}

\mathsf{Let\;M_1,\;M_2,\;M_3\;are \;three\;points\;which\;divide\;AB\;into\;four\;equal\;parts}

\mathsf{M_2\;is\;the\;midpoint\;of\;AB}

\mathsf{\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}

\mathsf{\left(\dfrac{-11+9}{2},\dfrac{4+8}{2}\right)}

\mathsf{\left(\dfrac{-2}{2},\dfrac{12}{2}\right)}

\implies\boxed{\mathsf{M_2\;is\;(-1,6)}}

\mathsf{M_1\;is\;the\;midpoint\;of\;AM_2}

\mathsf{\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}

\mathsf{\left(\dfrac{-11-1}{2},\dfrac{4+6}{2}\right)}

\mathsf{\left(\dfrac{-12}{2},\dfrac{10}{2}\right)}

\implies\boxed{\mathsf{M_1\;is\;(-6,5)}}

\mathsf{M_3\;is\;the\;midpoint\;of\;M_2B}

\mathsf{\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)}

\mathsf{\left(\dfrac{-1+9}{2},\dfrac{6+8}{2}\right)}

\mathsf{\left(\dfrac{8}{2},\dfrac{1}{2}\right)}

\implies\boxed{\mathsf{M_3\;is\;(4,7)}}

\underline{\textbf{Find more:}}

If P is the midpoint of A (3,8) and D(-3, -8) then find the coordinates of P​

https://brainly.in/question/38196313

Similar questions