Math, asked by amaanpeerzade82, 1 year ago

find the polynomial whose zeroes are 2+√3 and 2-√3


abcd1221: Polynomial is x^2 -4x +1

Answers

Answered by abcd1221
3
Ans: The polynomial whose zeroes are 2+√3 and 2-√3 is x^2 - 4x + 1
Answered by Anonymous
15
\sf{Let,}

\sf{ \alpha \ = 2 + {\sqrt{3}} \ \ and \ \ \beta \ = 2 - {\sqrt{3}}}

\sf{Now,}

\sf{Sum \ of \ zeroes \ -}

\sf{= \ \alpha + \beta}

\sf{= \ 2 + {\sqrt{3}} + 2 - {\sqrt{3}}}

\sf{= \ 4}

\sf{Product \ of \ zeroes \ -}

\sf{= \ \alpha \beta}

\sf{= \ ( \ 2 + {\sqrt{3}} \ ) \ ( \ 2 - {\sqrt{3}} \ )}


{\large{\boxed{\sf{\red{( \ a + b \ ) \ ( \ a - b \ ) \ = \ a^2 - b^2}}}}}


\sf{= \ ( 2 )^2 - ( {\sqrt{3}} )^2}

\sf{= \ 4 - 3}

\sf{= \ 1}

\sf{The \ required \ polynomial \ is \ -}

\sf\green{f \ ( \ x \ ) \ = \ x^2 - ( \ Sum \ of \ zeroes \ ) \ x \ +}
\sf\green{Product \ of \ zeroes}

\sf{f \ ( \ x \ ) \ = \ x^2 - \ ( \ 4 \ ) \ x \ + 1}

{\boxed{\sf{\blue{f \ ( \ x \ ) \ = \ x^2 - 4x + 1}}}}
Similar questions