Math, asked by indhuradithya9675, 10 months ago

Find the polynomial whose zeroes are twice the zeroes of the polynomial . 2x^2+12root2x+35

Answers

Answered by SarcasticL0ve
2

\sf x^2 + 12 \sqrt{2}x + 70

Given:-

  • \sf 2x^2 + 12 \sqrt{2}x + 35

To find:-

  • The polynomial whose zeroes are twice the zeroes of the polynomial.

Solution:-

By middle term splitting method:-

\sf 2x^2 + 12 \sqrt{2}x + 35

:\implies\sf 2x^2 + 7 \sqrt{2}x +5 \sqrt{2}x + 35

:\implies\sf \sqrt{2}x( \sqrt{2}x + 7) +5( \sqrt{2}x + 7)

:\implies\sf (\sqrt{2}x + 5)( \sqrt{2}x + 7)

Zeroes of polynomial = \sf \dfrac{-5}{ \sqrt{2}} and \sf \dfrac{-7}{ \sqrt{2}}

\rule{200}3

We have to find, a polynomial whose zeroes are twice the zeroes of the polynomial i.e \sf 2 \times \bigg( \dfrac{-5}{ \sqrt{2}} \bigg) and \sf 2 \times \bigg( \dfrac{-7}{ \sqrt{2}} \bigg) are zeroes of that unknown polynomial.

 \\

Sum of zeroes = \sf 2 \times \bigg( \dfrac{-5}{ \sqrt{2}} \bigg) + 2 \times \bigg( \dfrac{-7}{ \sqrt{2}} \bigg) = -2 \bigg( \dfrac{5 + 7}{ \sqrt{2}} \bigg) = -12 \sqrt{2}

 \\

Product of zeroes =\sf 2 \times \bigg( \dfrac{-5}{ \sqrt{2}} \bigg) + 2 \times \bigg( \dfrac{-7}{ \sqrt{2}} \bigg) = 4 \bigg( \dfrac{ -5}{ \sqrt{2}} \bigg) \bigg( \dfrac{-7}{ \sqrt{2}} \bigg) = 70

Therefore,

:\implies x² - (sum of zeroes)x + (product of zeroes)

:\implies x² - ( -12  \sqrt{2})x + 70

:\implies x² + 12 \sqrt{2}x + 70

\rule{200}3

Similar questions