find the principal argument of z = 6(cos310° - i sin310°)
Answers
Answered by
8
Answer:
5π/18
Step-by-step explanation:
Given: z = 6(cos 310° - i sin 310°)
= 6[cos(360° - 50°) - i sin(360° - 50°)]
∴ cos(360 - θ) = cosθ and sin(360 - θ) = -sinθ
= 6(cos 50° + i sin 50°)
= 6(cos 5π/18 + i sin 5π/18)
Thus, Principal argument = 5π/18.
Hope it helps!
siddhartharao77:
:-)
Answered by
3
6[cos(360° – 50°) – i sin(360° – 50°)]
= 6(cos 50° + i sin 50°)
= 6(cos `(5pi)/18 ` + i sin `(5pi)/18` )
Similar questions