Math, asked by ammar35, 2 months ago

find the principal value of cot^-1[ root 1-sin π/2+ root 1+sin π/2 / root1- sin π/2 + root1 +π/2

Answers

Answered by pulakmath007
2

SOLUTION

TO DETERMINE

The value of

\displaystyle \sf{  { \cot}^{ - 1} \bigg( \:  \frac{ \sqrt{1  -  \sin x}  +  \sqrt{1 +  \sin x} }{ \sqrt{1  -   \sin x}   -   \sqrt{1 +  \sin x}}  \:  \bigg) }

EVALUATION

\displaystyle \sf{  { \cot}^{ - 1} \bigg( \:  \frac{ \sqrt{1  -  \sin x}  +  \sqrt{1 +  \sin x} }{ \sqrt{1  -   \sin x}   -   \sqrt{1 +  \sin x}}  \:  \bigg) }

\displaystyle \sf{  =  { \cot}^{ - 1} \bigg( \:  \frac{ \sqrt{ { \cos}^{2} \frac{x}{2}  +  { \sin}^{2} \frac{x}{2}     -  2 \sin  \frac{x}{2} \cos  \frac{x}{2}  }  +  \sqrt{ { \cos}^{2} \frac{x}{2}  +  { \sin}^{2} \frac{x}{2}    + 2 \sin  \frac{x}{2} \cos  \frac{x}{2}} }{  \sqrt{ { \cos}^{2} \frac{x}{2}  +  { \sin}^{2} \frac{x}{2}     -  2 \sin  \frac{x}{2} \cos  \frac{x}{2}  }   -  \sqrt{ { \cos}^{2} \frac{x}{2}   +   { \sin}^{2} \frac{x}{2}    + 2 \sin  \frac{x}{2} \cos  \frac{x}{2}}}  \:  \bigg) }

\displaystyle \sf{  =  { \cot}^{ - 1} \bigg[\:   \frac{   \sqrt{{ \bigg( \cos  \frac{x}{2}  -  \sin  \frac{x}{2}  \bigg)}^{2} }  +  \sqrt{ { \bigg( \cos  \frac{x}{2}   +   \sin  \frac{x}{2}  \bigg)}^{2}}   }{ \sqrt{{ \bigg( \cos  \frac{x}{2}  -  \sin  \frac{x}{2}  \bigg)}^{2}}   -   \sqrt{ { \bigg( \cos  \frac{x}{2}  -  \sin  \frac{x}{2}  \bigg)}^{2}}}  \bigg] }

\displaystyle \sf{  =  { \cot}^{ - 1} \bigg[\:   \frac{   2 \cos  \frac{x}{2}   }{  - 2  \sin  \frac{x}{2}  }^{}  \bigg] }

\displaystyle \sf{  =  { \cot}^{ - 1} \bigg[\:   -  \cot  \frac{x}{2} \bigg] }

\displaystyle \sf{  =  { \cot}^{ - 1} \bigg[\:   \cot \bigg(\pi -   \frac{x}{2} \bigg) \bigg] }

\displaystyle \sf{  = \pi -   \frac{x}{2}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. tan⁻¹2 +tan⁻¹3 is..,Select Proper option from the given options.

(a) - π/4

(b) π/2

(c) 3π/4

(d) 3π/2

https://brainly.in/question/5596487

2. tan⁻¹(x/y)-tan⁻¹(x-y/x+y)=...(x/y≥0),Select Proper option from the given options.

(a) π/4

(b) π/3

(c) π/2

(d) π

https://brainly.in/question/5596504

Similar questions