Math, asked by adityaaurodipta, 1 year ago

find the product:-
(2x-y+3z) (4 x^{2} + y^{2} +9 z^{2} +2xy+3yz+6xz)

Answers

Answered by kvnmurty
6
(2x-y+3z) (4 x^{2} + y^{2} +9 z^{2} +2xy+3yz+6xz) \\ \\ 8 x^3+2xy^2+18xz^2+4x^2y +6xyz+12x^2z-4x^2y-y^3-9yz^2-2xy^2\\-3y^2z-6xyz+12x^2z+3y^2z+27z^3+6xyz+9yz^2+18xz^2 \\ \\ 8x^3-y^3+27z^3+36xz^2+6xyz+24x^2z \\

Anonymous: Expression in question seems to have been incorrectly by shri Aditya. It most likely is
Anonymous: Expression should be (2x-y+3z) (4x^2+y^2+9z^2+2xy+3yz - 6xz)
Anonymous: In that case it becomes = (2x)^3 + (-y)^3 + (3z)^3^ -3(2x)(-y)(3z) as per the identity a^3 +b^3 + c^3 -3abc = (a+b+c)(a^2 +b^2 +c^2 -ab -bc -ca). Mr. Aditya, please check.
Answered by Shravani83
7
(2x-y+3z) (4x²+y²+9z²+2xy+3yz+6xz)
= 2x(4x²+y²+9z²+2xy+3yz+6xz) -y(4x²+y²+9z²+2xy+3yz+6xz) +3z(4x²+y²+9z²+2xy+3yz+6xz)

= 8x³+ 2xy²+ 18xz²+ 4x²y+ 6xyz+ 12x²z- 4x²y- y³- 9yz²- 2xy²- 3xy²- 6xyz+ 12x²z+ 3y²z+ 27z³+ 6xyz+ 9yz²+ 18xz²

= 8x³- y³+ 27z³+ 36xz²+ 6xyz+ 24x²z[Answer]
Similar questions