Math, asked by audiologyprakashkuma, 1 year ago

Find the product of 8s2(t2-2st) and verify the result when S=1 and t=5

Answers

Answered by mysticd
35

Answer:

 \red { Product \: of \: 8s^{2}(t^{2}-2st)}\green{=8s^{2}t^{2} - 16s^{3}t}

Step-by-step explanation:

 \red { Product \: of \: 8s^{2}(t^{2}-2st)}

= 8s^{2} \times t^{2} - 8s^{2} \times 2st

 = 8s^{2}t^{2} - 16s^{3}t

 \red { Product \: of \: 8s^{2}(t^{2}-2st)}\green{=8s^{2}t^{2} - 16s^{3}t}\:---(1)

Verification:

 Substitute \: s = 1 \:and \: t=5\:in \: equation \:(1)

\blue {LHS} = 8 \times (1)^{2} (5^{2}-2\times 1 \times 5)\\=8(25 - 10)\\= 8 \times 15 \\= 120

 \blue {RHS} = {8s^{2}t^{2} - 16s^{3}t}\\= 8\times 1^{2}\times 5^{2} - 16 \times 1^{3}\times 5\\= 8\times 25 - 16 \times 5 \\= 200 - 80 \\= 120

 \blue { RHS = LHS }

Answered by kartikjalandhari113
1

Answer:

Productof8s

2

(t

2

−2st)=8s

2

t

2

−16s

3

t

Step-by-step explanation:

\red { Product \: of \: 8s^{2}(t^{2}-2st)}Productof8s

2

(t

2

−2st)

= 8s^{2} \times t^{2} - 8s^{2} \times 2st=8s

2

×t

2

−8s

2

×2st

= 8s^{2}t^{2} - 16s^{3}t=8s

2

t

2

−16s

3

t

\red { Product \: of \: 8s^{2}(t^{2}-2st)}\green{=8s^{2}t^{2} - 16s^{3}t}\:---(1)Productof8s

2

(t

2

−2st)=8s

2

t

2

−16s

3

t−−−(1)

Verification:

Substitute \: s = 1 \:and \: t=5\:in \: equation \:(1)Substitutes=1andt=5inequation(1)

\begin{gathered}\blue {LHS} = 8 \times (1)^{2} (5^{2}-2\times 1 \times 5)\\=8(25 - 10)\\= 8 \times 15 \\= 120\end{gathered}

LHS=8×(1)

2

(5

2

−2×1×5)

=8(25−10)

=8×15

=120

\begin{gathered} \blue {RHS} = {8s^{2}t^{2} - 16s^{3}t}\\= 8\times 1^{2}\times 5^{2} - 16 \times 1^{3}\times 5\\= 8\times 25 - 16 \times 5 \\= 200 - 80 \\= 120\end{gathered}

RHS=8s

2

t

2

−16s

3

t

=8×1

2

×5

2

−16×1

3

×5

=8×25−16×5

=200−80

=120

Similar questions