Find the product of 8s2(t2-2st) and verify the result when S=1 and t=5
Answers
Answer:
Step-by-step explanation:
Verification:
Answer:
Productof8s
2
(t
2
−2st)=8s
2
t
2
−16s
3
t
Step-by-step explanation:
\red { Product \: of \: 8s^{2}(t^{2}-2st)}Productof8s
2
(t
2
−2st)
= 8s^{2} \times t^{2} - 8s^{2} \times 2st=8s
2
×t
2
−8s
2
×2st
= 8s^{2}t^{2} - 16s^{3}t=8s
2
t
2
−16s
3
t
\red { Product \: of \: 8s^{2}(t^{2}-2st)}\green{=8s^{2}t^{2} - 16s^{3}t}\:---(1)Productof8s
2
(t
2
−2st)=8s
2
t
2
−16s
3
t−−−(1)
Verification:
Substitute \: s = 1 \:and \: t=5\:in \: equation \:(1)Substitutes=1andt=5inequation(1)
\begin{gathered}\blue {LHS} = 8 \times (1)^{2} (5^{2}-2\times 1 \times 5)\\=8(25 - 10)\\= 8 \times 15 \\= 120\end{gathered}
LHS=8×(1)
2
(5
2
−2×1×5)
=8(25−10)
=8×15
=120
\begin{gathered} \blue {RHS} = {8s^{2}t^{2} - 16s^{3}t}\\= 8\times 1^{2}\times 5^{2} - 16 \times 1^{3}\times 5\\= 8\times 25 - 16 \times 5 \\= 200 - 80 \\= 120\end{gathered}
RHS=8s
2
t
2
−16s
3
t
=8×1
2
×5
2
−16×1
3
×5
=8×25−16×5
=200−80
=120