Math, asked by priyankachopra1, 1 year ago

find the product of PQ, PQR ,R


ckyadav: pqr ka hole square
mohduzairali16: i knw,, it was only done by mistake
ckyadav: it's ok

Answers

Answered by mohduzairali16
5
PQ × PQR × R
P2 Q2 R 2

2 =SQUARE

ckyadav: there 2 p
Answered by smartcow1
25
Hey there,

Answer:

ˆPQR=cos−1(27√1235)

Explanation:

Be two vectors −−→AB and −−→AC :

−−→AB−−→AC=(AB)(AC)cos(ˆBAC)
=(xABxAC)+(yAByAC)+(zABzAC)

We have:

P=(1;1;1)
Q=(−2;2;4)
R=(3;−4;2)

therefore

−−→QP=(xPxQ;yPyQ;zPzQ)=(3;−1;−3)
−−→QR=(xRxQ;yRyQ;zRzQ)=(5;−6;−2)

and

(QP)=(xQP)2+(yQP)2+(zQP)2=9+1+9=√19

(QR)=(xQR)2+(yQR)2+(zQR)2=25+36+4=√65

Therefore:

−−→QP−−→QR=√19√65cos(ˆPQR)
=(3⋅5+(−1)(−6)+(−3)(−2))

cos(ˆPQR)=15+6+6√19√65=27√1235

ˆPQR=cos−1(27√1235)


smartcow1: thanks
ckyadav: wlcm
Similar questions