find the product of PQ, PQR ,R
ckyadav:
pqr ka hole square
Answers
Answered by
5
PQ × PQR × R
P2 Q2 R 2
2 =SQUARE
P2 Q2 R 2
2 =SQUARE
Answered by
25
Hey there,
Answer:
Answer:
ˆPQR=cos−1(27√1235)
Explanation:Be two vectors −−→AB and −−→AC :
−−→AB⋅−−→AC=(AB)(AC)cos(ˆBAC)
=(xABxAC)+(yAByAC)+(zABzAC)
We have:
P=(1;1;1)
Q=(−2;2;4)
R=(3;−4;2)
therefore
−−→QP=(xP−xQ;yP−yQ;zP−zQ)=(3;−1;−3)
−−→QR=(xR−xQ;yR−yQ;zR−zQ)=(5;−6;−2)
and
(QP)=√(xQP)2+(yQP)2+(zQP)2=√9+1+9=√19
(QR)=√(xQR)2+(yQR)2+(zQR)2=√25+36+4=√65
Therefore:
−−→QP⋅−−→QR=√19√65cos(ˆPQR)
=(3⋅5+(−1)(−6)+(−3)(−2))
→cos(ˆPQR)=15+6+6√19√65=27√1235
→ˆPQR=cos−1(27√1235)
Similar questions