Math, asked by sgoldi, 9 months ago

find the product of the question.​

Attachments:

Answers

Answered by prince5132
8

GIVEN :-

  • (x/2 - 3y) (3y + x/2) (x²/4 + 9y²)

TO FIND :-

  • The product

SOLUTION :-

⇒ [(x/2 - 3y) (3y + x/2)] (x²/4 + 9y²)

⇒ [x/2(3y + x/2) - 3y(3y + x/2)] (x²/4 + 9y²)

⇒ [(3xy)/2 + x²/4 - 9y² - (3xy)/2] (x²/4 + 9y²)

⇒ [(3xy)/2 + x²/4 - 9y² - (3xy)/2] (x²/4 + 9y²)

⇒ (x²/4 - 9y²) (x²/4 + 9y²)

⇒ [x²/4(x²/4 + 9y²) - 9y²(x²/4 + 9y²]

⇒ [x⁴/16 + (9x²y²)/4 - (9x²y²)/4 - 81y⁴]

x/16 - 81y

ADDITIONAL INFORMATION :-

⇒ ( x + y )² = x² + 2xy + y²

⇒ ( x - y )² = x² - 2xy + y²

⇒ ( x + a ) ( x + b ) = x² + x ( a + b ) + ab

⇒ ( a + b ) ( a - b ) = a² - b²

⇒ ( a + b ) ( a + b ) = ( a + b )²

Answered by BrainlyRohith
6

Question:

Find the product of

 \big( \frac{x}{2}  - 3y \big) \big(3y +  \frac{x}{2}  \big) \big( \frac{ {x}^{2} }{4}  + 9 {y}^{2}  \big)

To find:

★ To find the product of the given expression.

Answer:

The \: value \: is \:  \underline{ \:  \sf \pink { {x}^{4}  - 36 {y}^{4} } \: }

Given:

★ An expression is given,

 \sf{\big( \frac{x}{2}  - 3y \big) \big(3y +  \frac{x}{2}  \big) \big( \frac{ {x}^{2} }{4}  + 9 {y}^{2}  \big)}

Step-by-step explanation:

 \big( \frac{x}{2}  - 3y \big) \big(3y +  \frac{x}{2}  \big) \big( \frac{ {x}^{2} }{4}  + 9 {y}^{2}  \big)

 =\big(\frac{x - 6y}{2} \big)\big( \frac{6y + x}{2} \big)\big( \frac{ {x}^{2} + 36 {y}^{2}  }{4} )

L.C.M. is 4

 =  \frac{[2(x - 6y) \times 2(6y + x)] \times ( {x}^{2} + 36 {y}^{2})  }{4}

Now simplifying,

 \bigstar (x - 6y)(6y + x)

It also can be written as,

 \implies (x - 6y)(x + 6y)

It's \: of \: the \: form \:\\ \boxed{ ( {a}^{2}  -  {b}^{2} ) = (a  - b)(a + b)}

 \implies \underline{ ( {x}^{2}  -  {6y}^{2} )}

 \bigstar( {x}^{2}  + 36 {y}^{2} )

It also can be written as,

\implies  {(x)}^{2}  +  {(6y)}^{2}

It's \: of \: the \: form \: \\\boxed{ ( {a}^{2}   +  {b}^{2} ) =  {(a + b)}^{2} - 2ab }

 =  \frac{ \not{4}[( {x}^{2} -  {(6y)}^{2}( {x}^{2}  +  {(6y)}^{2}   }{ \not{4}}

 = ( {x}^{2}  - 6 {y}^{2} )( {x}^{2}  + 6 {y}^{2} )

It's \: of \: the \: form \: \underline{ ( {a}^{2}  -  {b}^{2} )}

 =  \boxed{ {x}^{4}  - 36 {y}^{4} }

\therefore The \: value \: is \:  \underline{ \: \sf \pink{ \bold{{x}^{4}  - 36 {y}^{4}} } \: }

Formulae used:

 \bigstar ( {a}^{2}  -  {b}^{2} ) = (a  -  b)(a + b)

\bigstar  {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2}

Formulae to know:

\bigstar  {(a  -  b)}^{2}  =  {a}^{2}   -  2ab +  {b}^{2}

\bigstar  {a}^{3}  +  {b}^{3}  = (a + b)( {a}^{2}  - ab  +  {b}^{2} )

\bigstar  {a}^{3}   -   {b}^{3}  = (a  -  b)( {a}^{2}   + ab  +  {b}^{2} )

\bigstar (x + a)(x + b) =  {x}^{2}  + (a + b)x + ab

Similar questions