Math, asked by 79880, 1 year ago

find the product of(x - 1/ x)(x +1/x)(x ^2 + 1/x)

Answers

Answered by MaheswariS
4

\underline{\textbf{Given:}}

\mathsf{\left(\dfrac{x-1}{x}\right)\left(\dfrac{x+1}{x}\right)\left(\dfrac{x^2+1}{x}\right)}

\underline{\textbf{To find:}}

\textsf{The product of}

\mathsf{\left(\dfrac{x-1}{x}\right)\left(\dfrac{x+1}{x}\right)\left(\dfrac{x^2+1}{x}\right)}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{\left(\dfrac{x-1}{x}\right)\left(\dfrac{x+1}{x}\right)\left(\dfrac{x^2+1}{x}\right)}

\mathsf{Using,}

\boxed{\mathsf{(a-b)(a+b)=a^2-b^2}}

\mathsf{=\left(\dfrac{x^2-1^2}{x^2}\right)\left(\dfrac{x^2+1}{x}\right)}

\mathsf{=\left(\dfrac{x^2-1}{x^2}\right)\left(\dfrac{x^2+1}{x}\right)}

\textsf{Once again using,}

\boxed{\mathsf{(a-b)(a+b)=a^2-b^2}}

\mathsf{=\dfrac{(x^2)^2-1^2}{x^3}}

\mathsf{=\dfrac{x^4-1}{x^3}}

\underline{\textbf{Answer:}}

\textsf{The product of}

\mathsf{\left(\dfrac{x-1}{x}\right)\left(\dfrac{x+1}{x}\right)\left(\dfrac{x^2+1}{x}\right)\;is\;\;\dfrac{x^4-1}{x^3}}

Answered by qwmagpies
0

Given: Given expression is

(x -  \frac{1}{x} )(x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{x} )

To find: We have to find the product.

Solution:

To find the product of the above expression we have to follow the below steps-

We know that,

(x - y)(x + y) = ( {x}^{2}  -  {y}^{2} )

Putting the formula in the above expression we get-

(x -  \frac{1}{x} )(x +  \frac{1}{x} ) \\  = ( {x}^{2}  -  \frac{1}{ {x}^{2} } )

Multiplying the result with the rest of the expression we get the final product of the expression.

( {x}^{2}  -  \frac{1}{ {x}^{2} } )( {x}^{2}  +  \frac{1}{x} ) \\  =  {x}^{4}  -  \frac{1}{ {x}^{2} }  \times  {x}^{2}  +  {x}^{2}  \times  \frac{1}{x}  -  \frac{1}{ {x}^{2} }  \times  \frac{1}{x}  \\  =  {x}^{4}  - 1 + x -  \frac{1}{ {x}^{3} }

Thus, the product of the above expression is {x}^{4}  - 1 + x -  \frac{1}{ {x}^{3} }.

Similar questions