Math, asked by Piyush7587, 8 months ago

Find the product using suitable identity:
(1) (3x+2y+2z)(9x^2+4y^2+4z^2-6xy-4yz-6zx) ​

Answers

Answered by Anonymous
7

Answer:

(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)

= (3x + 2y + 2z) [(3x)2 + (2y)2 + (2z)2 – 3x x 2y + 2y x 2z + 2z x 3x]

= (3x)3 + (2y)3 + (2z)3 – 3 x 3x x 2y x 2z

= 27x3 + 8y3 + 8Z3 – 36xyz

(ii) (4x – 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz – 8zx)

= (4x -3y + 2z) [(4x)2 + (-3y)2 + (2z)2 – 4x x (-3y + (3y) x (2z) – (2z x 4x)]

= (4x)3 + (-3y)3 + (2z)3 – 3 x 4x x (-3y) x (2z)

= 64x3 – 27y3 + 8z3 + 72xyz

(iii) (2a -3b- 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)

= (2a - 3b - 2c) [(2a)2 + (3b)2 + (2c)2 – 2a x (-3b) – (-3b) x (-2c) – (-2c) x 2a]

= (2a)3 + (3b)3 + (-2c)3 -3 x 2a x (-3b) (-2c)

= 8a3 – 21b3 – 8c3 – 36abc

(iv) (3x – 4y + 5z) (9x2 + 16y2 + 25z2 + 12xy – 15zx + 20yz)

= [3x + (-4y) + 5z] [(3x)2 + (-4y)2 + (5z)2 – 3x x (-4y) -(-4y) (5z) – 5z x 3x]

= (3x)3 + (-4y)3 + (5z)3 – 3 x 3x x (-4y) (5z)

= 27x3 – 64y3 + 125z3 + 180xyz

Step-by-step explanation:

Mark me as a brainleist

And follow me and thanks my answer please

Similar questions