Math, asked by anjanamahanta19, 10 months ago

Find the product using suitable identity:
(Root x -1/root x)(root x +1/root x)(x+1/x)(x^2+1/x^2)(x^4+1/x^4)

Answers

Answered by Anonymous
1

Answer:

\large\boxed{\sf{{x}^{8}  -  \frac{1}{ {x}^{8} } }}

Step-by-step explanation:

To find the product of:

( \sqrt{x}  -  \frac{1}{ \sqrt{x} } )( \sqrt{x}  +  \frac{1}{ \sqrt{x} } )(x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} } )( {x}^{4}  +  \frac{1}{ {x}^{4} }) \\  \\  = ( {( \sqrt{x} )}^{2}   -  \frac{1}{ {( \sqrt{x} )}^{2} } )( x +  \frac{1}{x} )( {x}^{2}  +  \frac{}{ {x}^{2} } )( {x}^{4}  +  \frac{1}{ {x}^{4} } ) \\  \\  = (x  -   \frac{1}{x} )(x +  \frac{1}{x} )( {x}^{2}  +  \frac{1}{ {x}^{2} })( {x}^{4}   +  \frac{1}{ {x}^{4} } ) \\  \\  = ( {x}^{2}  -  \frac{1}{ {x}^{2} } )( {x}^{2}  +  \frac{1}{ {x}^{2} } )( {x}^{4}  +  \frac{1}{ {x}^{4} } ) \\  \\  =  >( {( {x}^{2}) }^{2}  -  \frac{1}{ { ({x}^{2}) }^{2} } )( {x}^{4}  +  \frac{1}{ {x}^{4} } ) \\  \\  = ( {x}^{4}  -  \frac{1}{ {x}^{4} } )( {x}^{4}  +  \frac{1}{ {x}^{4} } ) \\  \\  =  {( {x}^{4} )}^{2}  -  \frac{1}{ {( {x}^{4}) }^{2} }  \\  \\  =  {x}^{8}  -  \frac{1}{ {x}^{8} }

Concept Map:-

  • (a+b)(a-b) = {a}^{2} - {b}^{2}
Similar questions