Math, asked by yakubuabdulai510, 2 months ago

Find the projection of the vector [2i-3j+6k] on the vector [i+2j+2k].

Answers

Answered by mathdude500
5

\large\underline{\bf{Solution-}}

\rm :\longmapsto\:Let \: \vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}

and

\rm :\longmapsto\:Let \: \vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}

We know,

\red{\bf :\longmapsto\:Projection \: of \: \vec{a} \: on \: \vec{b} = \dfrac{\vec{a}.\vec{b}}{ |\vec{b}| }}

Consider,

\rm :\longmapsto\:\vec{a}.\vec{b}

\:  \: \rm  =  \:  \: (2\hat{i} - 3\hat{j} + 6\hat{k}).(\hat{i} + 2\hat{j} + 2\hat{k})

\:  \: \rm  =  \:  \: 2 - 6 + 12

\:  \: \rm  =  \:  \: 8

 \boxed{\bf\implies \:\vec{a}.\vec{b} = 8}

Consider,

\rm :\longmapsto\: |\vec{b}|

\:  \: \rm  =  \:  \:  \sqrt{ {(1)}^{2} +  {(2)}^{2}   +  {(2)}^{2} }

\:  \: \rm  =  \:  \:  \sqrt{1 + 4 + 4}

\:  \: \rm  =  \:  \:  \sqrt{9}

\:  \: \rm  =  \:  \: 3

 \boxed{\bf\implies \: |\vec{b}| = 3}

Hence,

{\bf :\longmapsto\:Projection \: of \: \vec{a} \: on \: \vec{b} = \dfrac{\vec{a}.\vec{b}}{ |\vec{b}| } =  \dfrac{8}{3} }

Additional Information :-

\boxed{ \sf \: \vec{a}.\vec{b} =  |\vec{a}|  |\vec{b}| cos \theta}

\boxed{ \sf \:  |\vec{a} \times \vec{b}| =  |\vec{a}|   |\vec{b}| sin\theta}

\boxed{ \sf \: \vec{a}.\vec{b} = 0 \implies \: \vec{a} \:  \perp \: \vec{b}}

\boxed{ \sf \: \vec{a} \times \vec{b} = 0 \implies \: \vec{a} \:  \parallel \: \vec{b}}

\boxed{ \sf \: \vec{a}.\vec{a} =  { |\vec{a}| }^{2} }

\boxed{ \sf \: \vec{a} \times \vec{a} = 0}

\boxed{ \sf \: \vec{a}.\vec{b} = \vec{b}.\vec{a}}

\boxed{ \sf \: \vec{a} \times \vec{b} = -  \vec{b} \times \vec{a}}

Similar questions