find the Pythagorean triplet whose smallest number is 14.
Answers
Answered by
0
Answer:
14,48,50..............
Answered by
4
AnSwer -:
The Pythagorean triplet is -:
14 , 48 and 50
_____________________________
Explanation-:
Given ,
Smallest number is 14
To find,
The Pythagorean triplet
Solution-:
We know that ,
A Pythagorean triplet is -
2m
m² + 1
m² - 1
Now ,
The smallest number is 2 m
So ,
2m = 14
M = 14/2
M = 7
___________________________
Value of m² + 1
(7)² + 1
49 + 1
50
_____________________________
Value of m² - 1
(7)² - 1
49 - 1
48
_______________________________
Hence ,
The Pythagorean triplet is -:
14 , 48 and 50
_______________________________
Verification-:
(Hypotenuse)² = (Base)² + (Height)²
Hypotenuse is always the longest side.
(50)² = (48)² + (14)²
2500 = 2304 + 196
2500 = 2500
Therefore,
LHS = RHS
Hence verified
_______________________________
Pythagorean triples-: A set of three
positive integers that satisfy the
Pythagorean theorem is a Pythagorean
triples.
_____________________________
The Pythagorean triplet is -:
14 , 48 and 50
_____________________________
Explanation-:
Given ,
Smallest number is 14
To find,
The Pythagorean triplet
Solution-:
We know that ,
A Pythagorean triplet is -
2m
m² + 1
m² - 1
Now ,
The smallest number is 2 m
So ,
2m = 14
M = 14/2
M = 7
___________________________
Value of m² + 1
(7)² + 1
49 + 1
50
_____________________________
Value of m² - 1
(7)² - 1
49 - 1
48
_______________________________
Hence ,
The Pythagorean triplet is -:
14 , 48 and 50
_______________________________
Verification-:
(Hypotenuse)² = (Base)² + (Height)²
Hypotenuse is always the longest side.
(50)² = (48)² + (14)²
2500 = 2304 + 196
2500 = 2500
Therefore,
LHS = RHS
Hence verified
_______________________________
Pythagorean triples-: A set of three
positive integers that satisfy the
Pythagorean theorem is a Pythagorean
triples.
_____________________________
Similar questions