Math, asked by shourya9771, 1 year ago

find the quadratic equation alpha + beta is equal to 5 Alpha Beta is equals to one upon three​

Answers

Answered by rakhithakur
5
hence
 \alpha  +  \beta  =  -  \frac{b}{a}  =  \frac{5}{1}  \times  \frac{3}{3}  =  \frac{15}{3}
and
 \alpha  \beta  =  \frac{c}{a}  =  \frac{1}{3}
so the quadratic equation
 {ax}^{2}  + bx + c = 0
will be
 {3x}^{2}   - 15x + 1 = 0
hope it helps to you

shourya9771: thnx dear
rakhithakur: why
shourya9771: for solving
shourya9771: i love
shourya9771: uu
shourya9771: joking
rakhithakur: what are you saying get lost
shourya9771: joking
shourya9771: i have one more questions
Answered by tavilefty666
8

Step-by-step explanation:

Given

\rm \alpha+\beta=5\ and\ \alpha \times \beta=\frac{1}{3}\ where\ \alpha\ and\ \beta\ are\ the\ two\ zeros\ of\ the\ polynomial\\ \\ \rm Now,\ we\ know\ that\ when\ sum\ and\ product\ of\ zeroes\ is\ given,\ then\ we've\ to\ use\ this\ formula\\ \rm x^2-(\alpha+\beta)x+(\alpha \times \beta)=0\\ \rm Putting\ values\ in\ the\ formula\\ x^2-(5)x+(\frac{1}{3})=0\\ \\ \rm Taking\ LCM\ of\ the\ denominators\\ \rm The\ common\ denominator\ will\ be\ 3.\ Now\ multiply\ x^2\ and\ -5\ by\ 3\\ \rm The\ equation\ will\ be\ \frac{3x^2-15x+1}{3}=0\\ \\ \implies \rm 3x^2-15x+1=0\qquad (\because cross- multiplying)\\ \\ \therefore \rm The\ Quadratic\ equation\ is\ \bf 3x^2-15x+1=0

Similar questions