Math, asked by aftab29, 1 year ago

find the quadratic equation whose roots are reciprocal of the roots of the equation 3x2-20x+17=0

Answers

Answered by Anant02
7

3 {x }^{2}  - 20x + 17 = 0 \\ let \:  \alpha  \:  \beta \:  be\: roots  \\   \alpha  +  \beta  =  \frac{20}{3}  \\  \alpha  \beta  =  \frac{17}{3} \\ quardic \: equation \: has \: root \:   \frac{1}{ \alpha } and\frac{1}{ \beta }   \\  {x}^{2}  - ( \frac{1}{ \alpha }  +  \frac{1}{ \beta } )x +  \alpha  \beta  \\   = {x}^{2}  - ( \frac{ \alpha  +  \beta }{ \alpha  \beta } )x +  \alpha  \beta  \\   = {x}^{2}  - ( \frac{ \frac{20}{3} }{ \frac{17}{3} } )x +  \frac{17}{3}   \\  =  {x }^{2}  -  \frac{20}{17} x +  \frac{17}{3}  \\  =  \frac{51 {x}^{2} - 60x + 289 }{51}  \\ hence \: eq. \: is \: 51 {x}^{2}  - 60x + 289 \\
Similar questions