Math, asked by tamalimaity79, 5 days ago

Find the quadratic equation whose roots are square of the roots of the equation x²+x+1​

Answers

Answered by rutujanandalajkar
1

Answer:

The quadratic equation is x2 + x + 1 = 0.

Answered by LaeeqAhmed
3

 {x}^{2}  + x + 1

\blue { \boxed{\bf roots =  \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a} }}

 \implies x =    \frac{ - 1± \sqrt{ {1}^{2} - 4(1)(1)} }{2(1)}

 \implies x =    \frac{ - 1± \sqrt{  - 3}}{2}

 \implies x =    \frac{ - 1± \sqrt{   3}i}{2}

Since required equation's roots are square of roots of given equation.

 \implies x ^{2}  =   ( \frac{ - 1± \sqrt{   3}i}{2} ) ^{2}

 \implies x ^{2}  =    \frac{  1 - 3± 2\sqrt{   3}i}{4}

\implies x ^{2}  =    \frac{   - 2± 2\sqrt{   3}i}{4}

\implies x ^{2}  =    \frac{   - 1± \sqrt{   3}i}{2}

 \therefore  \alpha  =  \frac{ - 1 + \sqrt{3} i}{2}

 \therefore \beta  =  \frac{ - 1 -  \sqrt{3} i}{2}

 \sf \purple{req. \: equation}

 {x}^{2}  - ( \alpha  +  \beta ) x+  \alpha  \beta

 \implies {x}^{2}  - (  \frac{ - 1 +  \sqrt{3} i}{2}   +\frac{ - 1  -   \sqrt{3} i}{2}   )x + ( \frac{ - 1 +  \sqrt{3} i}{2} )( \frac{ - 1  -  \sqrt{3} i}{2}  )

 \implies {x}^{2}  - (  \frac{ - 1 +  \sqrt{3} i - 1 -  \sqrt{3} i}{2}    )x + ( \frac{  { (- 1)}^{2}  - (  \sqrt{3} i) ^{2} }{4} )

 \implies {x}^{2}  - (  \frac{ - 2}{2}    )x +  \frac{1- ( - 3) }{4}

 \orange{ \therefore {x}^{2}   + x + 1}

HOPE IT HELPS!!

Similar questions