Math, asked by lalitalagachu236, 1 month ago

find the quadratic equation whose zeroes are 2 and 1/3

Answers

Answered by AestheticSky
44

Given:-

  • α = 2
  • β = \sf\dfrac{1}{3}

Solution:-

  • sum of roots (α+β) = \sf 2+\dfrac{1}{3} = \dfrac{7}{3}
  • product of roots (αβ) = \sf 2\times\dfrac{1}{3} = \dfrac{2}{3}

Formula:-

  • quadratic equation = x²- (α+β)x + (αβ)

substituting the above values in the formula:-

  • quadratic equation = \sf x^{2} -\bigg(\dfrac{7}{3}\bigg) x +\dfrac{2}{3}

_________________

ADDITIONAL INFORMATION:-

Discriminant of a quadratic equation is calculated by the following formula:-

  • D = b² - 4ac

where, D,b, a, and c represents discriminant, coefficient of x, coefficient of x², and constant respectively.

Nature of roots with the help of discriminant:-

  • when D > 0, we have real and distinct roots
  • when D = 0, we have real and equal roots.  
  • when D < 0, we have imaginary roots.

__________________

Hope it's helpful !!

Answered by Anonymous
57

Given:-

 \sf 2 \: and \: \dfrac{1}{3} are the roots of a quadratic equation

To Find :-

The Quadratic equation

Solution :-

 { \sf { Let \: us \: assume \: that \: , } }

 \sf \leadsto \alpha = 2

 \sf \leadsto \beta = \dfrac{1}{3}

 { \sf { Now \: Sum \: of \: roots \: (S) \: , } }

 { \sf { : \longmapsto { S = \alpha + \beta } } }

 { \sf { : \longmapsto { S = 2 + \dfrac{1}{3} } } }

 { \sf { : \longmapsto { S = \dfrac{7}{3} } } }

 { \sf { Now \: Product \: of \: roots \: (P) \: } }

 { \sf { : \longmapsto { P = 2 × \dfrac{1}{3} } } }

 { \sf { : \longmapsto { P = \dfrac{2}{3} } } }

 { \sf { As \: we \: knows \: that ,  \: a \: Quadratic \: Equation \: is ,  } }

 { \sf  { x² - Sx + P = 0 } }

 { \sf { : \longmapsto { x² - \dfrac{7}{3}x + \dfrac{2}{3} = 0 } } }

 { \sf { Multiplying \: both \: sides \: by \: 3 } }

 { \sf { : \longmapsto { 3 × x² - \dfrac{7}{3} × 3 × x + \dfrac{2}{3} × 3 } } }

 { \sf { : \longmapsto { 3x² - 7x + 2 = 0 } } }

Henceforth , The Required equation is " 3x² - 7x + 2 = 0 " .

Similar questions