Math, asked by kunals15, 1 month ago

Find the quadratic polynomial the sum and product of whose zeroes are respectively -10 and -39.

Answers

Answered by Okhey
5

\:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Given : }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Given : }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

Sum of Zeroes ( α + β ) = 10

Product of Zeroes ( αβ ) = 39

Quadratic Polynomial = ?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Required \: Solution : }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\: \large\mathfrak{\dag \: Required \: Solution : }\:\:\:\:\:\:\:\:\:\:\:\:\:\:

\begin{gathered} \\\end{gathered}

\begin{gathered} \\\end{gathered}

\begin{gathered}\underline{\bigstar\:\textsf{According to the given Question :}}\\\\\end{gathered}

\begin{gathered}\underline{\bigstar\:\textsf{According to the given Question :}}\\\\\end{gathered}

\begin{gathered}:\implies\sf Polynomial=x^2-(Sum\:of\:Zeroes)x+Product\:of\:Zeroes\\\\\\:\implies\sf Polynomial=x^2 -(\alpha + \beta)x + ( \alpha \beta)\\\\\\:\implies\sf Polynomial=x^2 - ( 10)x + 39\\\\\\:\implies\underline{\boxed{\sf\red{ Polynomial=x^2 -10x + 39}}}\end{gathered}

\begin{gathered}:\implies\sf Polynomial=x^2-(Sum\:of\:Zeroes)x+Product\:of\:Zeroes\\\\\\:\implies\sf Polynomial=x^2 -(\alpha + \beta)x + ( \alpha \beta)\\\\\\:\implies\sf Polynomial=x^2 - ( 10)x + 39\\\\\\:\implies\underline{\boxed{\sf\red{ Polynomial=x^2 -10x + 39}}}\end{gathered}

Answered by Yasirrahman
1

Answer:

x^2+10x-39

Step-by-step explanation:

Quadratic polynomial = x^2-(sum of zeroes)x +(product of zeroes).

= x^2-(-10)x+(-39)

x^2+10x-39

Similar questions