Math, asked by kashishpandit2007, 2 months ago

find the quadratic polynomial whose sum and product of zeroes are root 2 and product is -3/2 also find its zeros​

Answers

Answered by BrainlyRish
24

Given : The Product of whose zeroes are \sf \dfrac{-3}{2} and the sum of the zeros is \sf\sqrt{2}.

Exigency to find : The Quadratic Polynomial & it's zeroes

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Finding Quadratic polynomial :

\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad  \:\:\bf \bigstar\:\: Quadratic\: Polynomial\::\\

\qquad \dag\:\:\bigg\lgroup \sf{ x^2 - (sum\:of\:zeroes)x + Product \:of\:zeroes \:=\:0\: }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here sum of zeroes are \bf\sqrt{2}  and the product of the zeros is \bf\dfrac{-3}{2} .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \bf Quadratic \:Polynomial \:\:: \sf x^2 - (sum\:of\:zeroes)x + Product \:of\:zeroes\: =\:0\\

\qquad:\implies \sf x^2 - (sum\:of\:zeroes)x + Product \:of\:zeroes \:=\:0\\

\qquad:\implies \sf x^2 - (\sqrt{2})x + \bigg( \dfrac{-3}{2}\bigg)=\:0\: \\

\qquad:\implies \sf x^2 - \sqrt{2}x +\bigg( \dfrac{-3}{2}\bigg)\:=\:0 \\

\qquad:\implies \sf  x^2 - \sqrt{2}x  - \dfrac{3}{2} \:0\;\\

\qquad:\implies \sf\dfrac{ 2x^2 - 2\sqrt{2}x +  -3}{2} \:0\;\\

\qquad:\implies \sf 2x^2 - 2\sqrt{2}x + ( -3) \:=\:0\times 2\;\\

\qquad:\implies \sf 2x^2 - 2\sqrt{2}x  -3 \:=\:0\;\\

\qquad:\implies \bf 2x^2 - 2\sqrt{2}x  -3 \:=\:0\;\\

\qquad :\implies \frak{\underline{\purple{\: 2x^2 - 2\sqrt{2}x  -3 \:\:\qquad \longrightarrow\:Required\:Quadratic\:Polynomial\:\:}} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The \:  Required\:Quadratic\:Polynomial\:\:\:is\:\bf{2x^2 - 2\sqrt{2}x  -3 }}}}\\

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Finding zeroes of Quadratic polynomial :

⠀⠀⠀⠀⠀⠀⠀⠀⠀☆⠀P O L Y N O M I A L : \sf 2x^2 - 2\sqrt{2}x  -3 \:

\qquad:\implies \bf Polynomial \: \::\sf  2x^2 - 2\sqrt{2}x  -3 \:=\:0\;\\⠀⠀⠀⠀⠀

\qquad:\implies \sf  2x^2 - 2\sqrt{2}x  -3 \:=\:0\;\\⠀⠀⠀⠀

\qquad:\implies \sf  2x^2 + \sqrt{2}x - 3\sqrt{2}x - 3 \:=\:0\;\\⠀⠀⠀⠀⠀

\qquad:\implies \sf  \sqrt {2}x (\sqrt{2} x + 1)  - 3( \sqrt{2}x + 1 ) \:=\:0\;\\⠀⠀⠀⠀

\qquad:\implies \sf  (\sqrt {2}x - 3) (\sqrt{2} x + 1)  \:=\:0\;\\⠀⠀⠀⠀⠀

\qquad :\implies \frak{\underline{\purple{\:x \:= \:\: \dfrac{3}{\sqrt{2}} \:\:or\:\:\dfrac{-1}{\sqrt{2}}   }} }\:\:\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:The \:  zeroes \:of\:Quadratic\:Polynomial\:\:\:are\:\bf{\:\dfrac{3}{\sqrt{2}} \:\:and\:\:\dfrac{-1}{\sqrt{2}}  \: }}}}\\

\rule{300}{1.5}

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\boxed {\begin{array}{cc} \bf{\underline {\bigstar\:\: For \: a \:Quadratic \:Polynomial \::}}\\\\ \sf{ Whose \:\:zeroes \:\:are\:\:\alpha \:\&\;\: \beta\:\:} \\\\ 1)\:\: \alpha + \beta \: =\:\dfrac{-b}{a} \quad \bigg\lgroup \bf Sum\:of\;Zeroes \bigg\rgroup \\\\ 2)\:\: \alpha \times \beta \: =\:\dfrac{c}{a} \quad \bigg\lgroup \bf Product \:of\;Zeroes \bigg\rgroup \\\\ \end{array}}

Similar questions