Math, asked by yoyo1476, 9 months ago

Find the quadratic polynomial whose the sum and product of the zeros are one upon root 2 + 1 and root 2 + 1

Answers

Answered by Anonymous
16

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Sum of zeros is  \rm \dfrac { 1 } { \sqrt 2 + 1 }

 \:\:

  • Product of zeros is  \rm \sqrt 2 + 1

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • The required quadratic polynomial.

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

 \sf Let \: \alpha \: \& \: \beta \: be \: the \: zeroes \: of \: quadratic \: polynomial.

 \:\:

 \underline{\bold{\texttt{Quadratic polynomial will be:}}}

 \:\:

 \sf \implies x^2 - (\alpha + \beta)x + \alpha\beta -------(1)

 \:\:

 \underline{\bold{\texttt{We are given :}}}

 \:\:

\purple\longrightarrow  \rm \alpha + \beta = \dfrac { 1 } { \sqrt 2 + 1 }

 \:\:

\purple\longrightarrow  \rm \alpha\beta = \sqrt 2 + 1

 \:\:

 \underline{\bold{\texttt{Rationalizing}}}  \sf \dfrac { 1 } { \sqrt 2 + 1 }

 \:\:

Multiplying numerator amd denominator by  \rm \sqrt 2 - 1

 \:\:

 \sf \longmapsto \dfrac { 1 } { \sqrt 2 + 1 } \times \dfrac { \sqrt 2 - 1 } { \sqrt 2 - 1 }

 \:\:

 \sf \longmapsto \dfrac { \sqrt 2 - 1 } { 2 - 1 }

 \:\:

 \bf \dashrightarrow \sqrt 2 - 1

 \:\:

 \underline{\bold{\texttt{We got:}}}

 \:\:

 \rm \alpha + \beta = \sqrt 2 - 1

 \:\:

 \underline{\bold{\texttt{Putting the values in (1)}}}

 \:\:

 \sf \longmapsto x^2 - (\sqrt 2 - 1)x + \sqrt 2 + 1

 \:\:

 \underline{\bold{\texttt{Required quadratic polynomial is:}}}

 \:\:

 \bf x^2 - \sqrt 2x + 1x + \sqrt 2 + 1

\rule{200}5

Similar questions