Math, asked by anshulrajput41, 1 year ago

find the quadratic polynomial whose zero 2+root3, 2-root3

Answers

Answered by Panzer786
18
Heya !!!



Let Alpha = 2+✓3 and Beta = 2-✓3



Sum of zeroes = Alpha + Beta



=> ( 2 + ✓3) + (2-✓3) = 4



And,


Product of zeroes = Alpha × Beta



=> ( 2 + ✓3) ( 2-✓3)




=> (2)² - (✓3)²



=> 4 - 3 = 1



Therefore,



Required Quadratic polynomial = X²-(Sum of zeroes)X + Product of zeroes





=> X²-(4)X + 1




=> X² -4X +1




HOPE IT WILL HELP YOU........ :-)
Answered by Anonymous
14
Hello here
______________________________

let \:  \:  \alpha  = 2 +  \sqrt{3}  \:  \:  \:  \:  \: and \:  \:  \beta  = 2 -  \sqrt{3}  \\  \\ sum \: of \: zeros = ( \alpha  +  \beta ) = (2 +  \sqrt{3}) + (2 -  \sqrt{3}  ) = 4 \\  \\ product \:  \: of \: zeros = (2 +  \sqrt{3} ) \times (2 -  \sqrt{3} )  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  >4 - 3 = 1 \\  \\ so \: the \:  \:  \: required \: polynomial \:  \: is \\  {x}^{2}   - ( \alpha  +  \beta )x +  \alpha  \beta  \\  \\  =  >  {x}^{2}  - (4)x + 1 \\  =  >  {x}^{2}  - 4x + 1
Hence , the required Polynomial is

 {x}^{2}  - 4x + 1
_______________________________

Hope it's helps you.
☺☺☺✌
Similar questions