Math, asked by MohithM45, 6 months ago

Find the quadratic polynomial whose zeroes are -2 and 5. Verify the relationship
between zeroes and coefficients of the polynomial​

Answers

Answered by Anonymous
40

\huge\underline{\bf{Given}}

  • Zeroes of a quadratic polynomial is -2 and 5.

\huge\underline{\bf{To\: Find}}

  • Quadratic polynomial.

\huge\underline{\bf{To\: Verify}}

  • Relationship between zeroes and coefficient of the polynomial.

\huge\underline{\bf{Solution}}

  • Let the zeroes of the polynomial be α and β.

\tt\longrightarrow{\pink{Sum\: of\: zeroes }}

\tt\longmapsto{α + β = (-2) + 5}

\tt\longmapsto{α + β = 3}

\tt\longrightarrow{\pink{Product\: of\: zeroes }}

\tt\longmapsto{αβ = (-2) \times 5}

\tt\longmapsto{αβ = -10}

We know that

\boxed{\bf{\bigstar{Polynomial = x^2 - (α + β)x + (αβ) {\bigstar}}}}

Required Quadratic polynomial

\tt:\implies{p(x) = x^2 - 3x + (-10)}

\tt:\implies{p(x) = x^2 - 3x - 10}

\huge\underline{\bf{Verification}}

\boxed{\bf{\bigstar{Relationship\: between\: zeroes\: and\: coefficients {\bigstar}}}}

\tt:\implies\: \: \: \: \: \: \: \: {\purple{Sum\: of\: zeroes = \dfrac{- coefficient\: of\: x}{coefficient\: of\: x^2}}}

\tt:\implies\: \: \: \: \: \: \: \: {3 = \dfrac{-(-3)}{1}}

\tt:\implies\: \: \: \: \: \: \: \: {3 = 3}

\tt:\implies\: \: \: \: \: \: \: \: {\purple{Product\: of\: zeroes = \dfrac{constant}{coefficient\: of\: x^2}}}

\tt:\implies\: \: \: \: \: \: \: \: {-10 = \dfrac{-10}{1}}

\tt:\implies\: \: \: \: \: \: \: \: {10 = 10}

\underline{\underline{\mathcal{\green{Hence\: verified}}}}

━━━━━━━━━━━━━━━━━━━━━━

Similar questions