Math, asked by kalyanipuru, 1 month ago

find the quadratic polynomial, whose zeroes are -2 and -5.verify the reaction ship between zeroes and coefficients of the polynomial
pls help me​

Answers

Answered by Anonymous
15

Given : Zeroes of the polynomial are -2 & -5.

We've to find the Quadratic polynonial whose zeroes are -2 and -5.

⠀⠀⠀⠀

☆ Let's find out the quadratic polynomial :

⠀⠀⠀⠀

✇ Let's consider α and β be zeroes of Polynomial.

⠀⠀⠀

\begin{gathered}\:{\underline{\boxed{\pmb{\sf{Sum\:of\:zeroes\:\purple{(\alpha + \beta)}\:}}}}}\end{gathered}   \\  \\  \\

 \begin{gathered}\qquad:\implies\sf  - 2 +  - 5\\  \\  \\   \implies \sf  \pink{ \frak{- 7}} \\  \\  \\ \end{gathered}

 \begin{gathered}{\underline{\boxed{\pmb{\sf{Product\:of\:zeroes\:\purple{(\alpha \beta)}\ \: :}}}}}\\ \\  \\ \end{gathered}

\begin{gathered}\qquad:\implies\sf ( - 2 ) ( - 5) \\  \\  \\   \implies \sf \pink{  \frak{10} }\\  \\  \\ \end{gathered}

\begin{gathered}\bf{\dag}\:{\underline{\boxed{\pmb{\sf{Quadratic  \: polynomial = {x}^{2} - Sum  \: of \:  zeroes (x) + Product  \: of  \: zeroes\::}}}}} \\  \\ \\ \end{gathered}

\begin{gathered}\qquad:\implies\sf  {x}^{2}  -  ( - 7)x + ( + 10)\\\\\\ \qquad:\implies{\underline{\boxed{\pmb{\frak{\red{ {x}^{2}  + 7x + 10}}}}}}\:\bigstar\\\\\\\end{gathered}

\therefore\:{\underline{\sf{Hence,\:The\: quadratic\: polynomial \: is \:{\pmb{{x}^{2}  + 7x + 10}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀

Here, In the Polynomial x² + 7x + 10, {a = 1 , b = 7 & c = 10}.

⠀⠀⠀⠀

☆ Now, Let's verify the relationship between zeroes and Coefficient :

⠀⠀⠀

\begin{gathered}\bf{\dag}\:{\underline{\boxed{\pmb{\sf{Sum\:of\:zeroes\:\purple{(\alpha + \beta)}\:}}}}}\end{gathered}   \\  \\  \\

\begin{gathered}\qquad\quad\dashrightarrow\sf \alpha + \beta = \dfrac{-b}{a}\\\\\\ \qquad\quad\dashrightarrow\sf \bigg( - 2 \bigg) + \bigg( - 5\bigg) =  - \dfrac{7}{1}\\\\\\ \qquad\quad\dashrightarrow\sf  - 2 - 5 =  - 7\\\\\\ \qquad\quad\dashrightarrow{\boxed{\boxed{\frak{\pink{ - 7  =  - 7}}}}}\\\\\\\end{gathered}

\begin{gathered}\bf{\dag}{\underline{\boxed{\pmb{\sf{Product\:of\:zeroes\:\purple{(\alpha \beta)}\ \: :}}}}}\\ \\  \\ \end{gathered}

\begin{gathered}\qquad\quad\dashrightarrow\sf \alpha \beta = \dfrac{c}{a}\\\\\\ \qquad\quad\dashrightarrow\sf \bigg( - 2\bigg) \bigg( - 5\bigg) = \dfrac{10}{1}\\\\\\ \qquad\quad\dashrightarrow\sf 5  \times 2 = 10\\\\\\ \qquad\quad\dashrightarrow{\boxed{\boxed{\frak{\pink{10 = 10}}}}}\\\\\\\end{gathered}

Hence Verified !

Similar questions