Math, asked by harman501, 11 months ago

find the quadratic polynomial whose zeroes are √3+√5 and √5 - √3​

Answers

Answered by Anonymous
1

hey mate here is ur answer =

Sum of roots= root 3+root 5+root 5-root 3

=2root 5.

product of roots=(root 5)^2-(root3)^2=2.

quadratic equation =

x^2-(sum of roots)x+(product of roots)

=x^2-(2root5)x+2.

hope it helps .

Answered by Anonymous
5

 \huge \mathfrak \red{answer}

_____________________________

Question:

find the quadratic polynomial whose zeroes are √3+√5 and √5 - √3

_________________________

step to step explanation

⇒Given quadratic polynomial whose zeroes are √3+√5 and √5 - √3

 \sf{ \:now \: Let \:  α = (3+ \sqrt{5} ) β  \: = (3- \sqrt{5)}}

Now we used the formula of polynomial

⇒ \bf{ \: { \boxed{ \green{ \tt{qudratic \: polynomial =  {x}^{2} - (sum \: of \: zeroes)x + product \: of \: zeroes \: }}}}}

⇒Now sum of zeroes

⇒ \rm{ \alpha  +  \beta }

 \rm{(3+ \sqrt{5} ) + (3- \sqrt{5})}

 \rm{6}

 \bf{ { \boxed{ \green{ \tt{ \alpha  +  \beta  = 6 \: }}}}}

⇒now Product of zeroes

⇒ \tt{ \alpha  \beta }

 \tt{(3+ \sqrt{5} ) (3- \sqrt{5} )}

 \tt{ {3}^{2} - ( \sqrt{5) }^{2} }

 \tt{9 - 5}

 \tt{4}

 \bf{ \: { \boxed{ \green{ \tt{ \alpha  \beta  = 4 \: }}}}}

then qudratic polynomial is

 \rm \red{ {x}^{2} - 6x + 4}

x² - (α + β)x + αβ

I hope it's help uh

mark it as brainlist

Similar questions