Math, asked by avdhutdhamankar6828, 1 year ago

Find the quadratic polynomial whose zeroes are 5+3 and 5-3

Answers

Answered by AnadeeYadav
0

Answer:

Step-by-step explanation:

This may help you.

Attachments:
Answered by dna63
3

\textbf{\large{\underline{\underline{\pink{Answer:-}}}}}

The Quadratic polynomial,,,

\mathrm{\implies{\boxed{\red{x^{2}-10x+16=0}}}}

\textit{\large{\underline{\underline{\pink{Step by step Explanation:-}}}}}

\textit{\underline{\green{Check,,}}}

\mathrm{x^{2}-10x+16=0}

\mathrm{a=1,,b=-10,,c=16}

\textit{\underline{Hence,,}}

\mathrm{b^{2}-4ac}

\mathrm{=(-10)^{2}-4\times{1}\times{16}}

\mathrm{=100-64}

\mathrm{=36}

Because \mathrm{(b^{2}-4ac)} is greater than Zero..

\textit{\underline{Hence,,}}

\mathrm{x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}}

\mathrm{=\frac{-(-10)\pm\sqrt{36}}{2\times{1}}}

\mathrm{=\frac{10\pm{6}}{2}}

\mathrm{=\frac{2(5\pm{3}}{2}}

\mathrm{=5\pm{3}}

\mathrm{x=5+3}

and,,\mathrm{x=5-3}

so,, The Zeros are,,

\mathrm{\implies{\boxed{\green{x=5+3}}}}

\mathrm{\implies{\boxed{\green{x=5-3}}}}

\textit{\underline{Hence proved,,}}

So,, the polynomial will be,,

\mathrm{\implies{\boxed{\green{x^{2}-10x+16=0}}}}

❣️❣️✌️✌️ Hope you like it.. please mark it as Brainliest answer... thanks ❣️❣️✌️✌️ ✌️

Similar questions