find the quadratic polynomial whose zeros are root 3 + 5 and root 3 minus 5
Answers
Answer:
x² - 2√3 - 22
Step-by-step explanation:
It is given that √3 + 5 and √3 - 5 are the zeroes of the required polynomial.
Let the two zeroes be α and β of the required polynomial.
∴ α = √3 + 5, β = √3 - 5
_____________________________
Now,
• Sum of zeroes = α + β
→ (√3 + 5) + (√3 - 5)
→ √3 + 5 + √3 - 5
→ √3 + √3
→ 2√3
• Product of zeroes = αβ
→ (√3 + 5)(√3 - 5)
- Identity : (a - b)(a + b) = a² - b²
Here, a = √3, b = 5
→ (√3)² - (5)²
→ 3 - 25
→ - 22
_____________________________
The required polynomial is :
→ p(x) = k [ x² - (α + β)x + αβ ]
- Putting known values.
→ p(x) = k [ x² - (2√3)x + (- 22) ]
→ p(x) = k [x² - 2√3x - 22]
- Putting k = 1.
→ p(x) = x² - 2√3 - 22
☀ QUESTION :- ☀
find the quadratic polynomial whose zeros are √ 3 + 5 and √3 - 5.
☀ ANSWER :- ☀
➠ let the two zeroes be α & β .
➠ .°. α = √3 + 5 & β = √3 -5
➠ sum of zeroes = α + β
➠ (√3 +5) + (√3 - 5)
➠ √3 + 5 + √3 -5
➠ √3 + √3
➠ 2√3.
➠ sum of product = α × β
➠ ( √3 +5 ) × (√3 -5)
➠ (√3)² - (5)² [(°.° (a +b) (a-b) = a² - b²)]
➠ 3 - 25
➠ -22.
WE KNOW THAT,
➠ p(x) = k(x²-(α+β)x + α×β)
NOW,
➠ p(x) = K ( x² - ( 2√3)x +(-22)
➠ p(x) = K (x ² - 2√3x -22)
➠ p(x) = (x² - 2√3x -22) [( °.° put k = 1)]