Math, asked by kartikeyatelluja, 3 months ago

Find the quadratic whose sum is (-20) and product of zeroes is 190?

Answers

Answered by 12thpáìn
350

\\\begin{gathered}\mathfrak{Given}\begin{cases} {\sf{Sum \:  of \:  Zeros=(-20)}} \\ \sf {Product  \: of  \: zeros=190}\end{cases}\end{gathered} \\

 \\\sf{Let  \: the \:  two  \: zeros  \: of  \: Quadratic  \: polynomial  \: be  \:  \:   \alpha \:  and \:  \beta  }\\

  • \\\sf Sum~ of ~Zeros(\alpha+\beta)=(-20)
  • \\\sf Product ~of ~zeros(\alpha\beta)=190\\\\

\\ \sf{If \:  a \:  a nd  \: b \:  a re  \: the  \: zeros  \: of \: Quadratic \:  polynomial \:  f(x)  \: then}\\\\

{→ f(x)= x²-(Sum  \: of  \: zeros)x+(Product  \: of  \: zeros)}

→f(x) =  {x}^{2}  - ( \alpha  +  \beta )x  + ( \alpha  \beta )

→f(x)  =   {x}^{2}  - (  - 20 )x  +  190

→f(x)  =   {x}^{2}   + 20 x  +  190  \\  \\  \\  \\

{\therefore \text{ the Required Quadratic polynomial}} \\  \bf \: f(x) =  {x}^{2} + 20x + 190

Similar questions