Math, asked by akashkumaryadav7745, 1 year ago

Find the quotient q(x) and remainder r(x) on dividing f(x) by g(x) and verify division algorithm

f(x)=15x3-20x2+13x-12, g(x)=2-2x+x2

Answers

Answered by ishwarsinghdhaliwal
66
Hope it helps .........
Attachments:
Answered by ashishks1912
15

GIVEN :

The functions f is defined by f(x)=15x^3-20x^2+13x-12

and the function g is defined by, g(x)=2-2x+x^2

TO FIND :

The quotient q(x) and remainder r(x) on dividing f(x) by g(x) and verify division algorithm.

SOLUTION :

Now divide the polynomial f(x) by g(x)

f(x)=15x^3-20x^2+13x-12

g(x)=2-2x+x^2 can be written as g(x)=x^2-2x+2

                             15x+10

                   ______________________

x^2-2x+2 ) 15x^3-20x^2+13x-12  

                    15x^3-30x^2+30x

             ___(-)___(+)_______________

                            10x^2-17x

                            10x^2-20x

                      ___(-)___(+)_______

                                      3x-32

                        ______________

The quotient is 15x+10 and remainder is 3x-32

Now verify the Division Algorithm :

Dividend=quotient\times divisor+remainder

Here Dividend is f(x)=15x^3-20x^2+13x-12 and divisor is g(x)=2-2x+x^2

Substitute the values in the formula we get

15x^3-20x^2+13x-12=(15x+10)\times (2-2x+x^2)+3x-32

Applying the Distributive property :

a(x+y)=ax+ay

=15x(2)+15x(-2x)+15x(x^2)+10(2)+10(-2x)+10(x^2)+3x-32

=30x-30x^2+15x^3+20-20x+10x^2+3x-32

Adding the like terms

=15x^3-20x^2+13x-12

15x^3-20x^2+13x-12=15x^3-20x^2+13x-12=f(x)

∴ The Division algorithm is verified for the give polynomials.

Similar questions