Math, asked by vanshrajput123rana, 6 months ago

find the radius of a circle who's circumstance is 5.28m

Answers

Answered by Pharas
3

Answer:

3.36m

Step-by-step explanation:

2πr=5.28

r=5.28×7/22×2

r=3.36m

Mark me BRAINLIEST

thanks my answer

follow me please please please

Answered by Anonymous
27

\large\underline{\frak{\qquad Given :  \qquad}} \\  \\

  • Find the radius of a circle who's circumference is 5.28 m.

\large\underline{\frak{\qquad To\: Find :  \qquad}} \\  \\

  • Radius of circle = ?

\large\underline{\frak{\qquad Solution :  \qquad}} \\  \\

Let radius of circle be 'r' m.

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}\\

:\implies \sf Circumference  \: of \:  circle = 2 \pi r \\  \\  \\

:\implies \sf 5.28 = 2  \times  \dfrac{22}{7}   \times r\\  \\  \\

:\implies \sf  2.64  = \dfrac{22}{7}   \times r\\  \\  \\

:\implies \sf \dfrac{2.64 \times 7}{22} = r\\  \\  \\

:\implies \sf r = \dfrac{2.64 \times 7}{22}  \\  \\  \\

:\implies \sf r = \dfrac{18.48}{22}  \\  \\  \\

:\implies \underline{ \boxed{ \sf r = 0.84 \: m}} \\  \\  \\

\therefore\:\underline{\textsf{The radius of circle is \textbf{0.84 m}}}. \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\frak{\qquad Verification :  \qquad}} \\  \\

:\implies \sf 5.28 = 2  \times  \dfrac{22}{7}   \times r\\  \\  \\

:\implies \sf 5.28 = 2  \times  \dfrac{22}{7}   \times 0.84\\  \\  \\

:\implies \underline{ \boxed{ \sf 5.28 =5.28}}\\  \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{\frak{\qquad Extra  \: brainly \:  knowledge :  \qquad}} \\  \\

\boxed{\bigstar{\sf \ Cylinder :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cylinder= \pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ cylinder= 2\pi r h\\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ cylinder= 2\pi r (h+r)

\boxed{\bigstar{\sf \ Cone :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Cone= \dfrac{1}{3}\pi r^2 h \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Cone = \pi r l \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Cone = \pi r (l+r) \\ \\ \\ \sf {\textcircled{\footnotesize4}} Slant \ Height \ of \ cone (l)= \sqrt{r^2+h^2}

\boxed{\bigstar{\sf \ Hemisphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Hemisphere= \dfrac{2}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Curved \ surface\ Area \ of \ Hemisphere = 2 \pi r^2 \\ \\ \\ \sf {\textcircled{\footnotesize3}} Total \ surface \ Area \ of \ Hemisphere = 3 \pi r^2

\boxed{\bigstar{\sf \ Sphere :- }}\\ \\\sf {\textcircled{\footnotesize1}} Volume \ of \ Sphere= \dfrac{4}{3}\pi r^3 \\ \\ \\ \sf {\textcircled{\footnotesize2}}\ Surface\ Area \ of \ Sphere = 4 \pi r^2

══════════════════════════════════════════════════

Similar questions