Math, asked by kdtiwarir, 7 months ago

find the radius of a circular field whose area is 154 cm2​

Answers

Answered by Uriyella
13
  • The radius of a circular field = 7 cm.

Given :

  • Area of a circular field = 154 cm²

To Find :

  • The radius of a circular field.

Solution :

We know that,

  \blue{\boxed{ \sf{ \orange{Area \: Of \: A \: Circular \: Field = \pi {r}^{2} }}}}

Where,

  \bullet \:  \: \rm r = Radius

Given,

 \rm Area \: of \: a \: circular \: field = 154  \: {cm}^{2}

That means,

 \rm\pi {r}^{2}  = 154 \:  {cm}^{2} –––(1)

Where,

 \bullet \:  \: \rm \pi =  \dfrac{22}{7}

Substitute the value of π in equation (1),

:  \implies  \rm\dfrac{22}{7}  \times  {r}^{2}  = 154 \:  {cm}^{2}  \\  \\  :  \implies \rm {r}^{2}  =154  \:  {cm}^{2}  \times  \dfrac{7}{22}  \\  \\  : \implies \rm {r}^{2}  = 77 \times  \frac{7}{11}  \:  {cm}^{2}  \\  \\  :  \implies  \rm {r}^{2}  = 7 \times 7 \:  {cm}^{2}  \\  \\  :  \implies \rm  {r}^{2}  = 49 \:  {cm}^{2}  \\  \\  :  \implies \rm r =  \sqrt{49 \:  {cm}^{2} }  \\  \\  :  \implies \rm r = 7 \: cm \\  \\  \:  \:  \:  \therefore \:  \: \rm r = 7 \: cm

Hence,

The radius of a circular field is 7 cm.

Verification :

Given,

• Area of a circular field = 154 cm²

We know that,

Area of circular field = πr²

Now we have,

 \bullet \:  \: \rm \pi =  \dfrac{22}{7}  \\  \\  \bullet \:  \: \rm r = 7 \: cm

Substitute both the values in equation (1),

 :  \implies  \rm  \dfrac{22}{7}  \times  {(7 \: cm)}^{2}  = 154 \:  {cm}^{2}  \\  \\  :  \implies  \rm\dfrac{22}{7}  \times 49 \:  {cm}^{2}  = 154 \:  {cm}^{2}  \\  \\  :  \implies \rm 22 \times 7 \: {cm}^{2}  = 154 \:  {cm}^{2}  \\  \\  :  \implies \rm 154 \:  {cm}^{2}  =  {154 \: cm}^{2}

Hence Verified !

Similar questions