Math, asked by malti48, 5 months ago

find the radius of curvature for this equation x^3+y^3+2x^3-4y+3x=0

Answers

Answered by BrainlyPopularman
11

GIVEN :

Equation –

 \\ \implies\tt  {x}^{3} +  {y}^{3} + 2 {x}^{3} - 4y + 3x = 0 \\

TO FIND :

• Radius of curvature = ?

SOLUTION :

 \\ \implies\tt  {x}^{3} +  {y}^{3} + 2 {x}^{3} - 4y + 3x = 0 \\

 \\ \implies\tt  3{x}^{3} +  {y}^{3} + 3x - 4y= 0 \\

• We know that –

 \\ \implies{ \boxed{\tt Radius \:  \: of \:  \:  curvature =  \dfrac{  \bigg| 1 +  \bigg(\dfrac{dy}{dx} \bigg)^{2} \bigg|^{ \frac{3}{2} }}{ \bigg| \dfrac{d^{2} y}{dx^{2}} \bigg| }}}  \\

• Now given equation –

 \\ \implies\tt  3{x}^{3} +  {y}^{3} + 3x - 4y= 0 \\

 \\ \implies\tt {y}^{3}  - 4y= - 3{x}^{3}  - 3x\\

• Differentiate with respect to 'x' –

 \\ \implies\tt 3{y}^{2} \dfrac{dy}{dx}- 4\dfrac{dy}{dx}= - 3(3 {x}^{2}) - 3\\

 \\ \implies\tt (3{y}^{2} - 4)\dfrac{dy}{dx}= - 9 {x}^{2}- 3\\

 \\ \implies\tt \dfrac{dy}{dx}=  \dfrac{- 9 {x}^{2}- 3}{3{y}^{2} - 4}\\

 \\ \large \implies{ \boxed{\tt \dfrac{dy}{dx}=  \dfrac{9 {x}^{2} + 3}{4 - 3{y}^{2}}}}\\

• Again Differentiate with respect to 'x' –

 \\\implies\tt \dfrac{d^{2} y}{dx^{2} }=  \dfrac{(4 - 3{y}^{2})(18x) -(9 {x}^{2} + 3) \bigg( - 6y \dfrac{dy}{dx} \bigg)}{(4 - 3{y}^{2})^{2} }\\

 \\\implies\tt \dfrac{d^{2} y}{dx^{2} }=  \dfrac{(4 - 3{y}^{2})(18x) -(9 {x}^{2} + 3) ( - 6y) \bigg(\dfrac{9 {x}^{2} + 3}{4 - 3{y}^{2}} \bigg)}{(4 - 3{y}^{2})^{2} }\\

 \\\implies\tt \dfrac{d^{2} y}{dx^{2} }=  \dfrac{(4 - 3{y}^{2})^{2} (18x)  + (9 {x}^{2} + 3)^{2}  (6y)}{(4 - 3{y}^{2})^{3} }\\

• Now put the values –

 \\ \implies\tt Radius \:  \: of \:  \:  curvature =  \dfrac{  \bigg| 1 +  \bigg(\dfrac{9 {x}^{2} + 3}{4 - 3{y}^{2}}\bigg)^{2} \bigg|^{ \frac{3}{2} }}{ \bigg|\dfrac{(4 - 3{y}^{2})^{2} (18x)  + (9 {x}^{2} + 3)^{2}  (6y)}{(4 - 3{y}^{2})^{3} }\bigg|}  \\

 \\ \implies\tt Radius \:  \: of \:  \:  curvature =  \dfrac{  \bigg| 1 +  \dfrac{(9 {x}^{2} + 3) ^{2} }{(4 - 3{y}^{2}) ^{2} }\bigg|^{ \frac{3}{2} }}{ \bigg|\dfrac{(4 - 3{y}^{2})^{2} (18x)  + (9 {x}^{2} + 3)^{2}  (6y)}{(4 - 3{y}^{2})^{3} }\bigg|}  \\

 \\ \implies\tt Radius \:  \: of \:  \:  curvature =  \dfrac{  \bigg| \dfrac{(4 - 3{y}^{2}) ^{2}  + (9 {x}^{2} + 3) ^{2} }{(4 - 3{y}^{2}) ^{2} }\bigg|^{ \frac{3}{2} }}{ \bigg|\dfrac{(4 - 3{y}^{2})^{2} (18x)  + (9 {x}^{2} + 3)^{2}  (6y)}{(4 - 3{y}^{2})^{3} }\bigg|}  \\

 \\ \implies\tt Radius \:  \: of \:  \:  curvature =  \dfrac{  \bigg| \dfrac{[(4 - 3{y}^{2}) ^{2}  + (9 {x}^{2} + 3) ^{2} ]^{ \frac{3}{2} } }{(4 - 3{y}^{2})^{3} }\bigg|}{ \bigg|\dfrac{(4 - 3{y}^{2})^{2} (18x)  + (9 {x}^{2} + 3)^{2}  (6y)}{(4 - 3{y}^{2})^{3} }\bigg|}  \\

 \\ \large \implies{ \boxed{ \tt Radius \:  \: of \:  \:  curvature =  \bigg|\dfrac{\{(4 - 3{y}^{2}) ^{2}  + (9 {x}^{2} + 3) ^{2} \}^{ \frac{3}{2} }}{(4 - 3{y}^{2})^{2} (18x)  + (9 {x}^{2} + 3)^{2}  (6y)} \bigg|}}\\

Similar questions